forked from dave-mccollough/python_flask_demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_classification_from_scratch.py
330 lines (258 loc) · 9.08 KB
/
image_classification_from_scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
"""
Title: Image classification from scratch
Author: [fchollet](https://twitter.com/fchollet)
Date created: 2020/04/27
Last modified: 2020/04/28
Description: Training an image classifier from scratch on the Kaggle Cats vs Dogs dataset.
"""
"""
## Introduction
This example shows how to do image classification from scratch, starting from JPEG
image files on disk, without leveraging pre-trained weights or a pre-made Keras
Application model. We demonstrate the workflow on the Kaggle Cats vs Dogs binary
classification dataset.
We use the `image_dataset_from_directory` utility to generate the datasets, and
we use Keras image preprocessing layers for image standardization and data augmentation.
"""
"""
## Setup
"""
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
"""
## Load the data: the Cats vs Dogs dataset
### Raw data download
First, let's download the 786M ZIP archive of the raw data:
"""
"""shell
curl -O https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip
"""
"""shell
unzip -q kagglecatsanddogs_3367a.zip
ls
"""
"""
Now we have a `PetImages` folder which contain two subfolders, `Cat` and `Dog`. Each
subfolder contains image files for each category.
"""
"""shell
ls PetImages
"""
"""
### Filter out corrupted images
When working with lots of real-world image data, corrupted images are a common
occurence. Let's filter out badly-encoded images that do not feature the string "JFIF"
in their header.
"""
import os
num_skipped = 0
for folder_name in ("Cat", "Dog"):
folder_path = os.path.join("PetImages", folder_name)
for fname in os.listdir(folder_path):
fpath = os.path.join(folder_path, fname)
try:
fobj = open(fpath, "rb")
is_jfif = tf.compat.as_bytes("JFIF") in fobj.peek(10)
finally:
fobj.close()
if not is_jfif:
num_skipped += 1
# Delete corrupted image
os.remove(fpath)
print("Deleted %d images" % num_skipped)
"""
## Generate a `Dataset`
"""
image_size = (180, 180)
batch_size = 32
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
"PetImages",
validation_split=0.2,
subset="training",
seed=1337,
image_size=image_size,
batch_size=batch_size,
)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
"PetImages",
validation_split=0.2,
subset="validation",
seed=1337,
image_size=image_size,
batch_size=batch_size,
)
"""
## Visualize the data
Here are the first 9 images in the training dataset. As you can see, label 1 is "dog"
and label 0 is "cat".
"""
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(int(labels[i]))
plt.axis("off")
"""
## Using image data augmentation
When you don't have a large image dataset, it's a good practice to artificially
introduce sample diversity by applying random yet realistic transformations to the
training images, such as random horizontal flipping or small random rotations. This
helps expose the model to different aspects of the training data while slowing down
overfitting.
"""
data_augmentation = keras.Sequential(
[
layers.experimental.preprocessing.RandomFlip("horizontal"),
layers.experimental.preprocessing.RandomRotation(0.1),
]
)
"""
Let's visualize what the augmented samples look like, by applying `data_augmentation`
repeatedly to the first image in the dataset:
"""
plt.figure(figsize=(10, 10))
for images, _ in train_ds.take(1):
for i in range(9):
augmented_images = data_augmentation(images)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_images[0].numpy().astype("uint8"))
plt.axis("off")
"""
## Standardizing the data
Our image are already in a standard size (180x180), as they are being yielded as
contiguous `float32` batches by our dataset. However, their RGB channel values are in
the `[0, 255]` range. This is not ideal for a neural network;
in general you should seek to make your input values small. Here, we will
standardize values to be in the `[0, 1]` by using a `Rescaling` layer at the start of
our model.
"""
"""
## Two options to preprocess the data
There are two ways you could be using the `data_augmentation` preprocessor:
**Option 1: Make it part of the model**, like this:
```python
inputs = keras.Input(shape=input_shape)
x = data_augmentation(inputs)
x = layers.experimental.preprocessing.Rescaling(1./255)(x)
... # Rest of the model
```
With this option, your data augmentation will happen *on device*, synchronously
with the rest of the model execution, meaning that it will benefit from GPU
acceleration.
Note that data augmentation is inactive at test time, so the input samples will only be
augmented during `fit()`, not when calling `evaluate()` or `predict()`.
If you're training on GPU, this is the better option.
**Option 2: apply it to the dataset**, so as to obtain a dataset that yields batches of
augmented images, like this:
```python
augmented_train_ds = train_ds.map(
lambda x, y: (data_augmentation(x, training=True), y))
```
With this option, your data augmentation will happen **on CPU**, asynchronously, and will
be buffered before going into the model.
If you're training on CPU, this is the better option, since it makes data augmentation
asynchronous and non-blocking.
In our case, we'll go with the first option.
"""
"""
## Configure the dataset for performance
Let's make sure to use buffered prefetching so we can yield data from disk without
having I/O becoming blocking:
"""
train_ds = train_ds.prefetch(buffer_size=32)
val_ds = val_ds.prefetch(buffer_size=32)
"""
## Build a model
We'll build a small version of the Xception network. We haven't particularly tried to
optimize the architecture; if you want to do a systematic search for the best model
configuration, consider using
[Keras Tuner](https://github.com/keras-team/keras-tuner).
Note that:
- We start the model with the `data_augmentation` preprocessor, followed by a
`Rescaling` layer.
- We include a `Dropout` layer before the final classification layer.
"""
def make_model(input_shape, num_classes):
inputs = keras.Input(shape=input_shape)
# Image augmentation block
x = data_augmentation(inputs)
# Entry block
x = layers.experimental.preprocessing.Rescaling(1.0 / 255)(x)
x = layers.Conv2D(32, 3, strides=2, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
x = layers.Conv2D(64, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
previous_block_activation = x # Set aside residual
for size in [128, 256, 512, 728]:
x = layers.Activation("relu")(x)
x = layers.SeparableConv2D(size, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
x = layers.SeparableConv2D(size, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.MaxPooling2D(3, strides=2, padding="same")(x)
# Project residual
residual = layers.Conv2D(size, 1, strides=2, padding="same")(
previous_block_activation
)
x = layers.add([x, residual]) # Add back residual
previous_block_activation = x # Set aside next residual
x = layers.SeparableConv2D(1024, 3, padding="same")(x)
x = layers.BatchNormalization()(x)
x = layers.Activation("relu")(x)
x = layers.GlobalAveragePooling2D()(x)
if num_classes == 2:
activation = "sigmoid"
units = 1
else:
activation = "softmax"
units = num_classes
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(units, activation=activation)(x)
return keras.Model(inputs, outputs)
model = make_model(input_shape=image_size + (3,), num_classes=2)
#keras.utils.plot_model(model, show_shapes=True)
"""
## Train the model
"""
epochs = 50
callbacks = [
keras.callbacks.ModelCheckpoint("save_at_{epoch}.h5"),
]
model.compile(
optimizer=keras.optimizers.Adam(1e-3),
loss="binary_crossentropy",
metrics=["accuracy"],
)
model.fit(
train_ds, epochs=epochs, callbacks=callbacks, validation_data=val_ds,
)
"""
We get to ~96% validation accuracy after training for 50 epochs on the full dataset.
"""
"""
## Run inference on new data
Note that data augmentation and dropout are inactive at inference time.
"""
save_dir = os.path.join(os.getcwd(), 'saved_models')
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model_path = os.path.join(save_dir, "cat_dog")
model.save(model_path)
print('Saved trained model at %s ' % model_path)
img = keras.preprocessing.image.load_img(
"PetImages/Cat/6779.jpg", target_size=image_size
)
img_array = keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create batch axis
predictions = model.predict(img_array)
score = predictions[0]
print(
"This image is %.2f percent cat and %.2f percent dog."
% (100 * (1 - score), 100 * score)
)