-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels_img_skip.py
264 lines (239 loc) · 9.77 KB
/
models_img_skip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env python3
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
def he_init(m):
s = np.sqrt(2./ m.in_features)
m.weight.data.normal_(0, s)
class GatedMaskedConv2d(nn.Module):
def __init__(self, in_dim, out_dim=None, kernel_size = 3, mask = 'B'):
super(GatedMaskedConv2d, self).__init__()
if out_dim is None:
out_dim = in_dim
self.dim = out_dim
self.size = kernel_size
self.mask = mask
pad = self.size // 2
#vertical stack
self.v_conv = nn.Conv2d(in_dim, 2*self.dim, kernel_size=(pad+1, self.size))
self.v_pad1 = nn.ConstantPad2d((pad, pad, pad, 0), 0)
self.v_pad2 = nn.ConstantPad2d((0, 0, 1, 0), 0)
self.vh_conv = nn.Conv2d(2*self.dim, 2*self.dim, kernel_size = 1)
#horizontal stack
self.h_conv = nn.Conv2d(in_dim, 2*self.dim, kernel_size=(1, pad+1))
self.h_pad1 = nn.ConstantPad2d((self.size // 2, 0, 0, 0), 0)
self.h_pad2 = nn.ConstantPad2d((1, 0, 0, 0), 0)
self.h_conv_res = nn.Conv2d(self.dim, self.dim, 1)
self.h_res = nn.Conv2d(in_dim, out_dim, 1)
def forward(self, v_map, h_map):
v_out = self.v_pad2(self.v_conv(self.v_pad1(v_map)))[:, :, :-1, :]
v_map_out = F.tanh(v_out[:, :self.dim])*F.sigmoid(v_out[:, self.dim:])
vh = self.vh_conv(v_out)
h_out = self.h_conv(self.h_pad1(h_map))
if self.mask == 'A':
h_out = self.h_pad2(h_out)[:, :, :, :-1]
h_out = h_out + vh
h_out = F.tanh(h_out[:, :self.dim])*F.sigmoid(h_out[:, self.dim:])
h_map_out = self.h_conv_res(h_out)
if self.mask == 'B':
h_map_out = h_map_out + self.h_res(h_map)
return v_map_out, h_map_out
class StackedGatedMaskedConv2d(nn.Module):
def __init__(self,
img_size = [1, 28, 28], layers = [64,64,64],
kernel_size = [7,7,7], latent_dim=64, latent_feature_map = 1, skip = 0):
super(StackedGatedMaskedConv2d, self).__init__()
self.skip = skip
input_dim = img_size[0]
self.conv_layers = []
self.z_linears = nn.ModuleList()
if latent_feature_map > 0:
self.latent_feature_map = latent_feature_map
if self.skip == 0:
add_dim = 0
else:
add_dim = latent_feature_map
for i in range(len(kernel_size)):
self.z_linears.append(nn.Linear(latent_dim, latent_feature_map*28*28) )
if i == 0:
self.conv_layers.append(GatedMaskedConv2d(input_dim + latent_feature_map,
layers[i], kernel_size[i], 'A'))
else:
self.conv_layers.append(GatedMaskedConv2d(layers[i-1] + add_dim,
layers[i], kernel_size[i]))
self.modules = nn.ModuleList(self.conv_layers)
def forward(self, img, q_z=None):
# if q_z is not None:
# z_img = self.z_linear(q_z)
# z_img = z_img.view(img.size(0), self.latent_feature_map, img.size(2), img.size(3))
v_map = img
h_map = img
for i in range(len(self.conv_layers)):
z_img_i = self.z_linears[i](q_z).view(img.size(0), self.latent_feature_map, 28, 28)
if i == 0 or self.skip == 1:
v_map = torch.cat([v_map, z_img_i], 1)
h_map = torch.cat([h_map, z_img_i], 1)
# if i == 0:
# if q_z is not None:
# v_map = torch.cat([img, z_img], 1)
# else:
# v_map = img
# h_map = v_map
# print(i, v_map.size(), h_map.size())
v_map, h_map = self.conv_layers[i](v_map, h_map)
return h_map
class ResidualBlock(nn.Module):
def __init__(self, in_dim, out_dim=None, with_residual=True, with_batchnorm=True, mask=None,
kernel_size = 3, padding = 1):
if out_dim is None:
out_dim = in_dim
super(ResidualBlock, self).__init__()
if mask is None:
self.conv1 = nn.Conv2d(in_dim, out_dim, kernel_size=kernel_size, padding=padding)
self.conv2 = nn.Conv2d(out_dim, out_dim, kernel_size=kernel_size, padding=padding)
else:
self.conv1 = MaskedConv2d(mask, in_dim, out_dim, kernel_size=kernel_size, padding=padding)
self.conv2 = MaskedConv2d(mask, out_dim, out_dim, kernel_size=kernel_size, padding=padding)
self.with_batchnorm = with_batchnorm
if with_batchnorm:
self.bn1 = nn.BatchNorm2d(out_dim)
self.bn2 = nn.BatchNorm2d(out_dim)
self.with_residual = with_residual
if in_dim == out_dim or not with_residual:
self.proj = None
else:
self.proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
def forward(self, x):
if self.with_batchnorm:
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
else:
out = self.conv2(F.relu(self.conv1(x)))
res = x if self.proj is None else self.proj(x)
if self.with_residual:
out = F.relu(res + out)
else:
out = F.relu(out)
return out
class MaskedConv2d(nn.Conv2d):
def __init__(self, include_center=False, *args, **kwargs):
super(MaskedConv2d, self).__init__(*args, **kwargs)
self.register_buffer('mask', self.weight.data.clone())
_, _, kH, kW = self.weight.size()
self.mask.fill_(1)
self.mask[:, :, kH // 2, kW // 2 + (include_center == True):] = 0
self.mask[:, :, kH // 2 + 1:] = 0
def forward(self, x):
self.weight.data *= self.mask.cuda()
return super(MaskedConv2d, self).forward(x)
class CNNVAE(nn.Module):
def __init__(self,
img_size = [1,28,28],
latent_dim = 32,
enc_layers = [64,64,64],
dec_kernel_size = [7,7,7],
dec_layers= [64,64,64],
latent_feature_map = 4,
skip = 0):
super(CNNVAE, self).__init__()
self.skip = skip
enc_modules = []
img_h = img_size[1]
img_w = img_size[2]
for i in range(len(enc_layers)):
if i == 0:
input_dim = img_size[0]
else:
input_dim = enc_layers[i-1]
enc_modules.append(ResidualBlock(input_dim, enc_layers[i]))
enc_modules.append(nn.Conv2d(enc_layers[i], enc_layers[i], kernel_size=2, stride=2))
img_h //= 2
img_w //= 2
latent_in_dim = img_h*img_w*enc_layers[-1]
self.z_linear = nn.Linear(latent_dim, 28*28)
self.enc_cnn = nn.Sequential(*enc_modules)
self.latent_linear_mean = nn.Linear(latent_in_dim, latent_dim)
self.latent_linear_logvar = nn.Linear(latent_in_dim, latent_dim)
self.enc = nn.ModuleList([self.enc_cnn, self.latent_linear_mean, self.latent_linear_logvar])
self.dec_cnn = StackedGatedMaskedConv2d(img_size=img_size, layers = dec_layers,
latent_dim= latent_dim, kernel_size = dec_kernel_size,
latent_feature_map = latent_feature_map,
skip = self.skip)
if self.skip == 0:
self.dec_linear = nn.Conv2d(dec_layers[-1], img_size[0], kernel_size = 1)
else:
self.dec_linear = nn.Conv2d(dec_layers[-1]+ latent_feature_map, img_size[0], kernel_size = 1)
self.dec = nn.ModuleList([self.dec_cnn, self.dec_linear])
for m in self.modules():
if isinstance(m, nn.Linear):
he_init(m)
def _enc_forward(self, img):
img_code = self.enc_cnn(img)
img_code = img_code.view(img.size(0), -1)
self.img_code = img_code
mean = self.latent_linear_mean(img_code)
logvar = self.latent_linear_logvar(img_code)
return mean, logvar
def _reparameterize(self, mean, logvar, z = None):
self.std = logvar.mul(0.5).exp()
if z is None:
self.z = Variable(torch.FloatTensor(self.std.size()).normal_(0, 1).type_as(mean.data))
else:
self.z = z
self.q_z = self.z*self.std + mean
return self.q_z
def _dec_forward(self, img, q_z):
dec_cnn_output = self.dec_cnn(img, q_z)
if self.skip == 1:
z_linear_last = self.z_linear(q_z).view(img.size(0), 1, 28, 28)
dec_cnn_output = torch.cat([dec_cnn_output, z_linear_last], 1)
pred = F.sigmoid(self.dec_linear(dec_cnn_output))
return pred
class MLPVAE(nn.Module):
def __init__(self,
img_size = [1,28,28],
latent_dim = 32,
enc_layers = [64,64,64],
dec_kernel_size = [7,7,7],
dec_layers= [64,64,64],
latent_feature_map = 4,
skip = 0):
super(MLPVAE, self).__init__()
self.skip = skip
h = 1024
self.enc_mlp = nn.Sequential(nn.Linear(28*28, h), nn.ReLU(),
nn.Linear(h, h), nn.ReLU())
self.latent_linear_mean = nn.Linear(h, latent_dim)
self.latent_linear_logvar = nn.Linear(h, latent_dim)
self.enc = nn.ModuleList([self.enc_mlp, self.latent_linear_mean, self.latent_linear_logvar])
self.num_layers = 2
self.dec_linears = nn.ModuleList([nn.Linear(h,h) for _ in range(self.num_layers)])
self.z_linears = nn.ModuleList([nn.Linear(latent_dim, h) for _ in range(self.num_layers)])
self.dec_init = nn.Linear(latent_dim, h)
self.dec_last = nn.Linear(h, 28*28)
def _enc_forward(self, img):
img_code = self.enc_mlp(img.view(img.size(0), -1))
mean = self.latent_linear_mean(img_code)
logvar = self.latent_linear_logvar(img_code)
return mean, logvar
def _reparameterize(self, mean, logvar, z = None):
self.std = logvar.mul(0.5).exp()
if z is None:
self.z = Variable(torch.FloatTensor(self.std.size()).normal_(0, 1).type_as(mean.data))
else:
self.z = z
self.q_z = self.z*self.std + mean
return self.q_z
def _dec_forward(self, img, q_z):
x = self.dec_init(q_z)
for i in range(self.num_layers):
x = self.dec_linears[i](x)
if self.skip == 1:
z = self.z_linears[i](q_z)
x = x + z
x = F.relu(x)
pred = self.dec_last(x)
pred = F.sigmoid(pred)
return pred.view(img.size(0), 1, 28, 28)