forked from NVIDIA/nccl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit.cc
2118 lines (1823 loc) · 82.3 KB
/
init.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*************************************************************************
* Copyright (c) 2015-2022, NVIDIA CORPORATION. All rights reserved.
*
* See LICENSE.txt for license information
************************************************************************/
#include "nccl.h"
#include "channel.h"
#include "nvmlwrap.h"
#include "gdrwrap.h"
#include "bootstrap.h"
#include "transport.h"
#include "group.h"
#include "net.h"
#include "coll_net.h"
#include "enqueue.h"
#include "graph.h"
#include "argcheck.h"
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <dlfcn.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#define STR2(v) #v
#define STR(v) STR2(v)
#if CUDART_VERSION >= 9020
#define NCCL_GROUP_CUDA_STREAM 0 // CGMD: CUDA 9.2,10.X Don't need to use an internal CUDA stream
#else
#define NCCL_GROUP_CUDA_STREAM 1 // CGMD: CUDA 9.0,9.1 Need to use an internal CUDA stream
#endif
const char* ncclFuncStr[NCCL_NUM_FUNCTIONS] = { "Broadcast", "Reduce", "AllGather", "ReduceScatter", "AllReduce" };
const char* ncclAlgoStr[NCCL_NUM_ALGORITHMS] = { "Tree", "Ring", "CollNetDirect", "CollNetChain", "NVLS", "NVLSTree" };
const char* ncclProtoStr[NCCL_NUM_PROTOCOLS] = { "LL", "LL128", "Simple" };
NCCL_PARAM(GroupCudaStream, "GROUP_CUDA_STREAM", NCCL_GROUP_CUDA_STREAM);
NCCL_PARAM(CheckPointers, "CHECK_POINTERS", 0);
NCCL_PARAM(CommBlocking, "COMM_BLOCKING", NCCL_CONFIG_UNDEF_INT);
static ncclResult_t commReclaim(ncclComm_t comm);
static uint64_t hashUniqueId(ncclUniqueId const &id) {
char const *bytes = (char const*)&id;
uint64_t h = 0xdeadbeef;
for(int i=0; i < (int)sizeof(ncclUniqueId); i++) {
h ^= h >> 32;
h *= 0x8db3db47fa2994ad;
h += bytes[i];
}
return h;
}
// GDRCOPY support: Off by default
NCCL_PARAM(GdrCopyEnable, "GDRCOPY_ENABLE", 0);
// GDRCOPY support
gdr_t ncclGdrCopy = NULL;
ncclResult_t initGdrCopy() {
if (ncclParamGdrCopyEnable() == 1) {
ncclGdrCopy = ncclGdrInit();
}
return ncclSuccess;
}
pthread_mutex_t initLock = PTHREAD_MUTEX_INITIALIZER;
static bool initialized = false;
static ncclResult_t ncclInit() {
if (__atomic_load_n(&initialized, __ATOMIC_ACQUIRE)) return ncclSuccess;
pthread_mutex_lock(&initLock);
if (!initialized) {
initEnv();
initGdrCopy();
// Always initialize bootstrap network
NCCLCHECK(bootstrapNetInit());
NCCLCHECK(ncclNetPluginInit());
initNvtxRegisteredEnums();
__atomic_store_n(&initialized, true, __ATOMIC_RELEASE);
}
pthread_mutex_unlock(&initLock);
return ncclSuccess;
}
NCCL_API(ncclResult_t, ncclGetVersion, int* version);
ncclResult_t ncclGetVersion(int* version) {
if (version == NULL) return ncclInvalidArgument;
*version = NCCL_VERSION_CODE;
return ncclSuccess;
}
NCCL_API(ncclResult_t, ncclGetUniqueId, ncclUniqueId* out);
ncclResult_t ncclGetUniqueId(ncclUniqueId* out) {
NCCLCHECK(ncclInit());
NCCLCHECK(PtrCheck(out, "GetUniqueId", "out"));
ncclResult_t res = bootstrapGetUniqueId((struct ncclBootstrapHandle*)out);
TRACE_CALL("ncclGetUniqueId(0x%llx)", (unsigned long long)hashUniqueId(*out));
return res;
}
// Prevent compiler from optimizing out these operations
#ifdef __clang__
#define NCCL_NO_OPTIMIZE __attribute__((optnone))
#else
#define NCCL_NO_OPTIMIZE __attribute__((optimize("O0")))
#endif
void NCCL_NO_OPTIMIZE commPoison(ncclComm_t comm) {
// Important that this does not trash intraComm0.
comm->rank = comm->cudaDev = comm->busId = comm->nRanks = -1;
}
#undef NCCL_NO_OPTIMIZE
static ncclResult_t ncclDestructorFnFree(struct ncclDestructor* dtor) {
free(dtor->obj);
return ncclSuccess;
}
void ncclCommPushFree(struct ncclComm* comm, void* obj) {
struct ncclDestructor* dtor = ncclMemoryStackAlloc<struct ncclDestructor>(&comm->memPermanent);
dtor->fn = ncclDestructorFnFree;
dtor->obj = obj;
dtor->next = comm->destructorHead;
comm->destructorHead = dtor;
}
static ncclResult_t ncclDestructorFnCudaFree(struct ncclDestructor* dtor) {
NCCLCHECK(ncclCudaFree(dtor->obj));
return ncclSuccess;
}
void ncclCommPushCudaFree(struct ncclComm* comm, void* obj) {
struct ncclDestructor* dtor = ncclMemoryStackAlloc<struct ncclDestructor>(&comm->memPermanent);
dtor->fn = ncclDestructorFnCudaFree;
dtor->obj = obj;
dtor->next = comm->destructorHead;
comm->destructorHead = dtor;
}
static ncclResult_t ncclDestructorFnCudaHostFree(struct ncclDestructor* dtor) {
CUDACHECK(cudaFreeHost(dtor->obj));
return ncclSuccess;
}
void ncclCommPushCudaHostFree(struct ncclComm* comm, void* obj) {
struct ncclDestructor* dtor = ncclMemoryStackAlloc<struct ncclDestructor>(&comm->memPermanent);
dtor->fn = ncclDestructorFnCudaHostFree;
dtor->obj = obj;
dtor->next = comm->destructorHead;
comm->destructorHead = dtor;
}
static ncclResult_t ncclDestructorFnCudaGdrFree(struct ncclDestructor* dtor) {
NCCLCHECK(ncclGdrCudaFree(dtor->obj));
return ncclSuccess;
}
void ncclCommPushCudaGdrFree(struct ncclComm* comm, void* handle) {
struct ncclDestructor* dtor = ncclMemoryStackAlloc<struct ncclDestructor>(&comm->memPermanent);
dtor->fn = ncclDestructorFnCudaGdrFree;
dtor->obj = handle;
dtor->next = comm->destructorHead;
comm->destructorHead = dtor;
}
static ncclResult_t commFree(ncclComm_t comm) {
/* commFree() should not involve any sync among ranks. */
if (comm == NULL)
return ncclSuccess;
/* in commReclaim, we have guaranteed only last rank which calls ncclCommDestroy() will
* free all intra-process communicators; therefore, we only need to focus on local
* resource cleanup in commFree(). */
if (comm->proxyState && comm->proxyRefCountOld == 0 && comm->proxyState->thread) {
pthread_join(comm->proxyState->thread, nullptr);
}
delete[] comm->userRedOps;
free(comm->connectSend);
free(comm->connectRecv);
free(comm->peerInfo);
if (comm->topo)
ncclTopoFree(comm->topo);
if (comm->nodeRanks) {
for (int n=0; n<comm->nNodes; n++) free(comm->nodeRanks[n].localRankToRank);
free(comm->nodeRanks);
}
free(comm->rankToNode);
free(comm->rankToLocalRank);
free(comm->collNetHeads);
if (comm->bootstrap)
NCCLCHECK(bootstrapClose(comm->bootstrap));
for (int channel=0; channel<MAXCHANNELS; channel++)
NCCLCHECK(freeChannel(comm->channels+channel, comm->nRanks, 1, comm->localRanks));
if (comm->sharedRes) {
if (ncclAtomicRefCountDecrement(&comm->sharedRes->refCount) == 0) {
for (int c=0; c<MAXCHANNELS; c++) {
if (comm->sharedRes->peers[c]) free(comm->sharedRes->peers[c]);
if (comm->sharedRes->devPeers[c]) ncclCudaFree(comm->sharedRes->devPeers[c]);
}
free(comm->sharedRes->tpRankToLocalRank);
NCCLCHECK(ncclStrongStreamDestruct(&comm->sharedRes->hostStream));
NCCLCHECK(ncclStrongStreamDestruct(&comm->sharedRes->deviceStream));
NCCLCHECK(ncclProxyDestroy(comm));
free(comm->sharedRes);
}
}
if (comm->nvlsSupport) NCCLCHECK(ncclNvlsFree(comm));
struct ncclDestructor* dtor = comm->destructorHead;
while (dtor != nullptr) {
NCCLCHECK(dtor->fn(dtor));
dtor = dtor->next;
}
ncclMemoryStackDestruct(&comm->memScoped);
ncclMemoryStackDestruct(&comm->memPermanent);
if (ncclAtomicRefCountDecrement(comm->abortFlagRefCount) == 0) {
NCCLCHECK(ncclCudaHostFree((void *)comm->abortFlag));
free(comm->abortFlagRefCount);
}
free((void*)comm->config.netName);
free(comm->topParentRanks);
free(comm->topParentLocalRanks);
commPoison(comm); // poison comm before free to avoid comm reuse.
free(comm);
return ncclSuccess;
}
NCCL_PARAM(AggChannelSize, "AGG_CHANNEL_SIZE", -2);
NCCL_PARAM(DisableGraphHelper, "GRAPH_HELPER_DISABLE", 0);
// GDRCOPY support: FIFO_ENABLE when enabled locates a workFifo in CUDA memory
NCCL_PARAM(GdrCopyFifoEnable, "GDRCOPY_FIFO_ENABLE", 1);
NCCL_PARAM(WorkFifoDepth, "WORK_FIFO_DEPTH", 64<<10);
enum ncclLaunchMode ncclParamLaunchMode;
NCCL_PARAM(DmaBufEnable, "DMABUF_ENABLE", 1);
// Detect DMA-BUF support
static ncclResult_t dmaBufSupported(struct ncclComm* comm) {
if (ncclParamDmaBufEnable() == 0 || comm->ncclNet->regMrDmaBuf == NULL || ncclCudaLibraryInit() != ncclSuccess) return ncclInternalError;
#if CUDA_VERSION >= 11070
int flag = 0;
CUdevice dev;
int cudaDriverVersion;
CUDACHECK(cudaDriverGetVersion(&cudaDriverVersion));
if (CUPFN(cuDeviceGet) == NULL || cudaDriverVersion < 11070) return ncclInternalError;
CUCHECK(cuDeviceGet(&dev, comm->cudaDev));
// Query device to see if DMA-BUF support is available
(void) CUPFN(cuDeviceGetAttribute(&flag, CU_DEVICE_ATTRIBUTE_DMA_BUF_SUPPORTED, dev));
if (flag == 0) return ncclInternalError;
INFO(NCCL_INIT, "DMA-BUF is available on GPU device %d", comm->cudaDev);
return ncclSuccess;
#endif
return ncclInternalError;
}
ncclResult_t ncclCommEnsureReady(ncclComm_t comm) {
/* comm must be ready, or error will be reported */
ncclResult_t ret = ncclSuccess;
if (*comm->abortFlag) {
ncclGroupJobAbort();
} else {
NCCLCHECK(ncclCommGetAsyncError(comm, &ret));
if (ret != ncclSuccess) {
/* if ret is not ncclInProgress, we just keep it. */
WARN("Attempt to use communicator before the previous operation returned ncclSuccess");
if (ret == ncclInProgress) ret = ncclInvalidArgument;
goto exit;
}
}
exit:
return ret;
}
static ncclResult_t commAlloc(struct ncclComm* comm, struct ncclComm* parent, int ndev, int rank) {
if (ndev < 1) {
WARN("invalid device count (%d) requested", ndev);
return ncclInvalidArgument;
}
if (rank >= ndev || rank < 0) {
WARN("rank %d exceeds ndev=%d", rank, ndev);
return ncclInvalidArgument;
}
ncclMemoryStackConstruct(&comm->memPermanent);
ncclMemoryStackConstruct(&comm->memScoped);
comm->destructorHead = nullptr;
comm->rank = rank;
comm->nRanks = ndev;
NCCLCHECK(ncclNetInit(comm));
INFO(NCCL_INIT, "Using network %s", comm->ncclNet->name);
if (parent && parent->config.splitShare) {
if (parent->ncclNet != comm->ncclNet) {
WARN("Split shares resources, but parent comm netName %s is different from child comm netName %s", parent->ncclNet->name, comm->ncclNet->name);
return ncclInvalidUsage;
}
}
// Try to create a CUDA object right away. If there is something wrong with
// the device we're on (failure cause #1) , better know it early.
CUDACHECK(cudaGetDevice(&comm->cudaDev));
NCCLCHECK(getBusId(comm->cudaDev, &comm->busId));
nvmlDevice_t nvmlDev;
char busId[NVML_DEVICE_PCI_BUS_ID_BUFFER_SIZE];
NCCLCHECK(int64ToBusId(comm->busId, busId));
NCCLCHECK(ncclNvmlDeviceGetHandleByPciBusId(busId, &nvmlDev));
NCCLCHECK(ncclNvmlDeviceGetIndex(nvmlDev, (unsigned int*)&comm->nvmlDev));
comm->compCap = ncclCudaCompCap();
TRACE(NCCL_INIT,"comm %p rank %d nranks %d cudaDev %d busId %lx compCap %d", comm, rank, ndev, comm->cudaDev, comm->busId, comm->compCap);
comm->checkPointers = ncclParamCheckPointers() == 1 ? true : false;
comm->dmaBufSupport = (dmaBufSupported(comm) == ncclSuccess) ? true : false;
comm->collNetSupport = 0;
memset(comm->collNetSupportMatrix, 0, sizeof(comm->collNetSupportMatrix));
ncclMemoryPoolConstruct(&comm->memPool_ncclKernelPlan);
ncclMemoryPoolConstruct(&comm->memPool_ncclProxyOp);
ncclMemoryPoolConstruct(&comm->memPool_ncclPointerList);
comm->groupNext = reinterpret_cast<struct ncclComm*>(0x1);
comm->preconnectNext = reinterpret_cast<struct ncclComm*>(0x1);
comm->channelSize = ncclParamAggChannelSize();
static_assert(MAXCHANNELS <= sizeof(*comm->connectSend)*8, "comm->connectSend must have enough bits for all channels");
static_assert(MAXCHANNELS <= sizeof(*comm->connectRecv)*8, "comm->connectRecv must have enough bits for all channels");
NCCLCHECK(ncclCalloc(&comm->connectSend, comm->nRanks));
NCCLCHECK(ncclCalloc(&comm->connectRecv, comm->nRanks));
// Mark channels as non initialized.
for (int c=0; c < MAXCHANNELS; c++) comm->channels[c].id = -1;
if (parent == NULL || !parent->config.splitShare) {
struct ncclSharedResources* sharedRes = NULL;
NCCLCHECK(ncclCalloc(&sharedRes, 1));
/* most of attributes are assigned later in initTransportsRank(). */
sharedRes->owner = comm;
sharedRes->tpNRanks = comm->nRanks;
NCCLCHECK(ncclCalloc(&sharedRes->tpRankToLocalRank, comm->nRanks));
NCCLCHECK(ncclStrongStreamConstruct(&sharedRes->deviceStream));
NCCLCHECK(ncclStrongStreamConstruct(&sharedRes->hostStream));
comm->sharedRes = sharedRes;
sharedRes->refCount = 1;
} else {
comm->sharedRes = parent->sharedRes;
ncclAtomicRefCountIncrement(&parent->sharedRes->refCount);
}
if (comm->topParentRanks == NULL) {
NCCLCHECK(ncclCalloc(&comm->topParentRanks, comm->nRanks));
for (int i = 0; i < comm->nRanks; ++i)
comm->topParentRanks[i] = i;
}
ncclIntruQueueMpscConstruct(&comm->callbackQueue);
return ncclSuccess;
}
static ncclResult_t devCommSetup(ncclComm_t comm) {
ncclResult_t ret = ncclSuccess;
int nRanks = comm->nRanks;
struct ncclDevCommAndChannels tmpCommAndChans;
struct ncclDevCommAndChannels *devCommAndChans = NULL;
NCCLCHECKGOTO(ncclStrongStreamAcquireUncaptured(&comm->sharedRes->deviceStream), ret, fail);
NCCLCHECKGOTO(ncclCudaCallocAsync(&devCommAndChans, 1, comm->sharedRes->deviceStream.cudaStream), ret, fail);
ncclCommPushCudaFree(comm, devCommAndChans);
comm->devComm = &devCommAndChans->comm;
tmpCommAndChans.comm.rank = comm->rank;
tmpCommAndChans.comm.nRanks = nRanks;
tmpCommAndChans.comm.abortFlag = comm->abortFlag;
for (int p=0; p < NCCL_NUM_PROTOCOLS; p++) {
tmpCommAndChans.comm.buffSizes[p] = comm->buffSizes[p];
}
tmpCommAndChans.comm.channels = &devCommAndChans->channels[0];
comm->workFifoDepth = ncclParamWorkFifoDepth();
if (0 != (comm->workFifoDepth & (comm->workFifoDepth-1))) {
WARN("NCCL_WORK_FIFO_DEPTH=%d is being ignored because it is not a power of 2.", comm->workFifoDepth);
comm->workFifoDepth = 64<<10;
}
tmpCommAndChans.comm.workFifoDepth = comm->workFifoDepth;
if (ncclGdrCopy != NULL && ncclParamGdrCopyFifoEnable() == 1) {
// The workFifoHeap lives in GDR mapped CUDA memory.
NCCLCHECKGOTO(ncclGdrCudaCalloc(&comm->workFifoHeap, &comm->devWorkFifoHeap, comm->workFifoDepth, &comm->workFifoHeapGdrHandle), ret, fail);
ncclCommPushCudaGdrFree(comm, comm->workFifoHeapGdrHandle);
} else {
// The workFifoHeap lives in cudaHost memory.
comm->workFifoHeapGdrHandle = nullptr;
NCCLCHECKGOTO(ncclCudaHostCalloc(&comm->workFifoHeap, comm->workFifoDepth), ret, fail);
ncclCommPushCudaHostFree(comm, comm->workFifoHeap);
comm->devWorkFifoHeap = comm->workFifoHeap;
}
tmpCommAndChans.comm.workFifoHeap = comm->devWorkFifoHeap;
NCCLCHECKGOTO(ncclCudaHostCalloc(&comm->workFifoDone, MAXCHANNELS), ret, fail);
ncclCommPushCudaHostFree(comm, comm->workFifoDone);
comm->workFifoSent = 0;
comm->workFifoAckdMin = 0;
for (int c=0; c < MAXCHANNELS; c++) {
tmpCommAndChans.channels[c].peers = comm->channels[c].devPeers;
tmpCommAndChans.channels[c].ring = comm->channels[c].ring;
tmpCommAndChans.channels[c].ring.userRanks = comm->channels[c].devRingUserRanks;
tmpCommAndChans.channels[c].tree = comm->channels[c].tree;
tmpCommAndChans.channels[c].collnetChain = comm->channels[c].collnetChain;
tmpCommAndChans.channels[c].collnetDirect = comm->channels[c].collnetDirect;
tmpCommAndChans.channels[c].nvls = comm->channels[c].nvls;
tmpCommAndChans.channels[c].workFifoDone = &comm->workFifoDone[c];
if (comm->channels[c].ring.userRanks != nullptr) {
NCCLCHECKGOTO(ncclCudaMemcpyAsync(tmpCommAndChans.channels[c].ring.userRanks, comm->channels[c].ring.userRanks, nRanks, comm->sharedRes->deviceStream.cudaStream), ret, fail);
}
}
NCCLCHECKGOTO(ncclCudaMemcpyAsync(devCommAndChans, &tmpCommAndChans, 1, comm->sharedRes->deviceStream.cudaStream), ret, fail);
exit:
CUDACHECK(cudaStreamSynchronize(comm->sharedRes->deviceStream.cudaStream));
NCCLCHECK(ncclStrongStreamRelease(ncclCudaGraphNone(), &comm->sharedRes->deviceStream));
return ret;
fail:
goto exit;
}
// Pre-process the string so that running "strings" on the lib can quickly reveal the version.
#define VERSION_STRING "NCCL version " STR(NCCL_MAJOR) "." STR(NCCL_MINOR) "." STR(NCCL_PATCH) NCCL_SUFFIX "+cuda" STR(CUDA_MAJOR) "." STR(CUDA_MINOR)
static void showVersion() {
static int shown = 0;
if (shown == 0 && ncclDebugLevel >= NCCL_LOG_VERSION) {
printf("%s\n", VERSION_STRING);
fflush(stdout);
if (ncclDebugFile != stdout)
INFO(NCCL_ALL,"%s", VERSION_STRING); // Also log NCCL version in one of the files
shown = 1;
}
}
static ncclResult_t fillInfo(struct ncclComm* comm, struct ncclPeerInfo* info, uint64_t commHash) {
info->rank = comm->rank;
info->cudaDev = comm->cudaDev;
info->nvmlDev = comm->nvmlDev;
info->hostHash=getHostHash()+commHash;
info->pidHash=getPidHash()+commHash;
// Get the device MAJOR:MINOR of /dev/shm so we can use that
// information to decide whether we can use SHM for inter-process
// communication in a container environment
struct stat statbuf;
SYSCHECK(stat("/dev/shm", &statbuf), "stat");
info->shmDev = statbuf.st_dev;
info->busId = comm->busId;
NCCLCHECK(ncclGpuGdrSupport(comm, &info->gdrSupport));
info->comm = comm;
info->cudaCompCap = comm->minCompCap = comm->maxCompCap = comm->compCap;
return ncclSuccess;
}
static ncclResult_t setupChannel(struct ncclComm* comm, int channelId, int rank, int nranks, int* ringRanks) {
TRACE(NCCL_INIT, "rank %d nranks %d", rank, nranks);
NCCLCHECK(initChannel(comm, channelId));
struct ncclRing* ring = &comm->channels[channelId].ring;
// Find our ring-distance from rank zero and reorganize ranks to start with rank.
int ixZero=0, ixRank=0;
for (int i=0; i < nranks; i++) {
if (ringRanks[i] == 0) ixZero = i;
if (ringRanks[i] == rank) ixRank = i;
}
ring->index = (ixRank-ixZero + nranks)%nranks;
for (int i=0; i<nranks; i++) {
ring->userRanks[i] = ringRanks[(i+ixRank)%nranks];
}
return ncclSuccess;
}
#define DEFAULT_LL_BUFFSIZE (NCCL_LL_LINES_PER_THREAD*NCCL_LL_MAX_NTHREADS*NCCL_STEPS*sizeof(union ncclLLFifoLine))
#define DEFAULT_LL128_BUFFSIZE (NCCL_LL128_ELEMS_PER_THREAD*NCCL_LL128_MAX_NTHREADS*NCCL_STEPS*sizeof(uint64_t))
#define DEFAULT_BUFFSIZE (1 << 22) /* 4MiB */
#define DEFAULT_BUFFSIZE_ARM (1 << 20) /* 1MiB */
NCCL_PARAM(BuffSize, "BUFFSIZE", -2);
NCCL_PARAM(LlBuffSize, "LL_BUFFSIZE", -2);
NCCL_PARAM(Ll128BuffSize, "LL128_BUFFSIZE", -2);
NCCL_PARAM(P2pNetChunkSize, "P2P_NET_CHUNKSIZE", (1 << 17)); /* 128 kB */
NCCL_PARAM(P2pPciChunkSize, "P2P_PCI_CHUNKSIZE", (1 << 17)); /* 128 kB */
NCCL_PARAM(P2pNvlChunkSize, "P2P_NVL_CHUNKSIZE", (1 << 19)); /* 512 kB */
static ncclResult_t computeBuffSizes(struct ncclComm* comm) {
int cpuArch, cpuVendor, cpuModel;
NCCLCHECK(ncclTopoCpuType(comm->topo, &cpuArch, &cpuVendor, &cpuModel));
int64_t envs[NCCL_NUM_PROTOCOLS] = { ncclParamLlBuffSize(), ncclParamLl128BuffSize(), ncclParamBuffSize() };
int defaults[NCCL_NUM_PROTOCOLS] = { DEFAULT_LL_BUFFSIZE, DEFAULT_LL128_BUFFSIZE, DEFAULT_BUFFSIZE };
if (cpuArch == NCCL_TOPO_CPU_ARCH_ARM) defaults[NCCL_PROTO_SIMPLE] = DEFAULT_BUFFSIZE_ARM;
for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
comm->buffSizes[p] = envs[p] != -2 ? envs[p] : defaults[p];
}
if (comm->nNodes > 1) comm->p2pChunkSize = ncclParamP2pNetChunkSize();
else if (ncclTopoPathAllNVLink(comm->topo)) comm->p2pChunkSize = ncclParamP2pNvlChunkSize();
else comm->p2pChunkSize = ncclParamP2pPciChunkSize();
if (comm->sharedRes->owner != comm) {
/* make sure split comm p2pChunkSize won't exceed shared p2pChunkSize. */
comm->p2pChunkSize = std::min(comm->p2pChunkSize, comm->sharedRes->tpP2pChunkSize);
} else {
comm->sharedRes->tpP2pChunkSize = comm->p2pChunkSize;
}
INFO(NCCL_INIT, "P2P Chunksize set to %d", comm->p2pChunkSize);
return ncclSuccess;
}
NCCL_PARAM(GraphDumpFileRank, "GRAPH_DUMP_FILE_RANK", 0);
NCCL_PARAM(CollNetNodeThreshold, "COLLNET_NODE_THRESHOLD", 2);
NCCL_PARAM(NvbPreconnect, "NVB_PRECONNECT", 1);
NCCL_PARAM(AllocP2pNetLLBuffers, "ALLOC_P2P_NET_LL_BUFFERS", 0);
static ncclResult_t collNetTrySetup(ncclComm_t comm, ncclComm_t parent, struct ncclTopoGraph* collNetGraph) {
ncclResult_t ret = ncclSuccess;
int* heads = NULL;
int rank = comm->rank;
int collNetSetupFail = 0;
int highestTypes[NCCL_MAX_LOCAL_RANKS] = { TRANSPORT_P2P };
// Find all head ranks
int nHeads = collNetGraph->nChannels;
int highestTransportType0, highestTransportType1;
char line[1024];
bool share;
struct collnetShareInfo {
int headPosition;
int isMaster;
};
struct collnetShareInfo* infos = NULL;
NCCLCHECKGOTO(ncclCalloc(&heads, nHeads), ret, fail);
// Head GPU index is always 0
for (int c = 0; c < nHeads; c++) {
heads[c] = collNetGraph->intra[c * comm->localRanks + 0];
}
comm->collNetHeads = heads;
comm->collNetHeadsNum = nHeads;
if (parent && parent->collNetSupport && parent->config.splitShare && parent->nNodes == comm->nNodes) {
NCCLCHECKGOTO(ncclCalloc(&infos, comm->nRanks), ret, fail);
/* check whether child can share collnet resources of parent. Since parent builds each collnet communicator
* based on heads with the same head position in each node, as long as the collnet heads of child comm
* can match parent's heads, we can let child communicator share parent's collnet resources. */
for (int h = 0; h < nHeads; ++h) {
int prev = INT_MIN;
struct collnetShareInfo* myinfo;
share = true;
myinfo = infos + comm->rank;
memset(myinfo, 0, sizeof(struct collnetShareInfo));
/* find the child head position in parent collnet heads. */
if (heads[h] == comm->rank) {
myinfo->headPosition = -1;
myinfo->isMaster = 1;
for (int th = 0; th < parent->collNetHeadsNum; ++th)
if (parent->topParentRanks[parent->collNetHeads[th]] == comm->topParentRanks[comm->rank]) {
myinfo->headPosition = th;
break;
}
}
NCCLCHECKGOTO(bootstrapAllGather(comm->bootstrap, infos, sizeof(struct collnetShareInfo)), ret, fail);
for (int i = 0; i < comm->nRanks; ++i) {
if (infos[i].isMaster) {
if (prev == INT_MIN)
prev = infos[i].headPosition;
if (infos[i].headPosition == -1 || prev != infos[i].headPosition) {
share = false;
break;
}
}
}
if (share) {
if (myinfo->isMaster) {
comm->collNetSharedRes = parent->collNetSharedRes;
comm->collNetChannels = std::min(std::max(comm->nChannels, comm->nvlsChannels), parent->collNetSharedRes->nChannels);
for (int c = 0; c < comm->collNetChannels; ++c)
NCCLCHECKGOTO(initCollnetChannel(comm, c, parent, true), ret, fail);
}
} else {
/* TODO: CX-6 and CX-7 both do not support multiple sharp resources per process, if child comm cannot
* share the sharp resource from parent, we cannot use sharp in this case. This restriction might be
* lifted by sharp plugin/IB hardware in the future. */
collNetSetupFail = 1;
if (comm->rank == 0) {
WARN("Child comms (nRanks %d) fails to share parent comms (nRanks %d) sharp resources", comm->nRanks, parent->nRanks);
}
goto fail;
}
}
share = true;
} else {
/* this allocated buffer will be freed on proxy side */
NCCLCHECK(ncclCalloc(&comm->collNetSharedRes, 1));
/* TODO: min or max? */
comm->collNetChannels = comm->collNetSharedRes->nChannels = std::max(comm->nChannels, comm->nvlsChannels);
comm->collNetSharedRes->buffSize = comm->buffSizes[NCCL_PROTO_SIMPLE];
for (int c = 0; c < comm->collNetChannels; c++) {
struct ncclChannel* channel = comm->channels + c;
NCCLCHECKGOTO(initCollnetChannel(comm, c, parent, false), ret, fail);
for (int h = 0; h < nHeads; h++) {
const int head = heads[h];
collNetSetupFail |= ncclTransportCollNetSetup(comm, collNetGraph, channel, head, head, h, collNetRecv);
if (!collNetSetupFail) collNetSetupFail |= ncclTransportCollNetSetup(comm, collNetGraph, channel, head, head, h, collNetSend);
}
// Verify CollNet setup across ranks after trying the first channel
if (c == 0) {
NCCLCHECKGOTO(ncclTransportCollNetCheck(comm, collNetSetupFail), ret, fail);
}
}
share = false;
}
if (share) {
memcpy(comm->collNetSupportMatrix, parent->collNetSupportMatrix, sizeof(comm->collNetSupportMatrix));
} else {
do {
/* Initialize all entries in collNetSupportMatrix[redop][type]. Since some
ranks don't connect to sharp we enable a (redop,type) if any rank claims
support. */
const ncclRedOp_t redops[] = {ncclSum, ncclProd, ncclMin, ncclMax};
uint8_t(*matrix)[4][ncclNumTypes];
bool isHead = false;
matrix = nullptr;
NCCLCHECKGOTO(ncclCalloc(&matrix, comm->nRanks), ret, matrix_end);
for (int h = 0; h < nHeads; h++) isHead |= (heads[h] == comm->rank);
if (isHead) {
for (int ty=0; ty < ncclNumTypes; ty++) {
for (int i=0; i < 4; i++) {
int support = 0;
NCCLCHECKGOTO(collNetReduceSupport(comm, (ncclDataType_t)ty, redops[i], &support), ret, matrix_end);
// bit 0 = not supported, bit 1 = supported
matrix[rank][redops[i]][ty] = 1<<(support ? 1 : 0);
}
}
}
NCCLCHECKGOTO(bootstrapAllGather(comm->bootstrap, matrix, sizeof(*matrix)), ret, matrix_end);
for (int ty=0; ty < ncclNumTypes; ty++) {
for (int i=0; i < 4; i++) {
int op = redops[i];
uint8_t accum = 0;
for (int r=0; r < comm->nRanks; r++) accum |= matrix[r][op][ty];
// We support (redop, type) if some rank supports it and no rank doesn't support it
comm->collNetSupportMatrix[op][ty] = (accum == (1<<1));
}
}
matrix_end:
free(matrix);
if (ret != ncclSuccess) goto fail;
} while (0);
}
// Verify CollNet setup across ranks after trying all channels
NCCLCHECKGOTO(ncclTransportCollNetCheck(comm, collNetSetupFail), ret, fail);
TRACE(NCCL_INIT, "rank %d Connected inter-node CollNet", rank);
line[0] = '\0';
for (int c = 0; c < comm->nChannels; c++) {
struct ncclTree* chain = &comm->channels[c].collnetChain;
snprintf(line + strlen(line), 1023 - strlen(line), " [%d] %d->%d->%d",
c, chain->down[0], rank, chain->up);
}
line[1023] = '\0';
INFO(NCCL_INIT, "Collnet Chains %s", line);
// Connect Collnet + chain
for (int c = 0; c < comm->nChannels; c++) {
struct ncclChannel* channel = comm->channels + c;
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, 1, &channel->collnetChain.up, 1, channel->collnetChain.down, 0), ret, fail);
}
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, collNetGraph, 0), ret, fail);
for (int c = 0; c < comm->nChannels; c++) {
struct ncclChannel* channel = comm->channels + c;
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, 1, channel->collnetChain.down, 1, &channel->collnetChain.up, 1), ret, fail);
}
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, collNetGraph, 1), ret, fail);
INFO(NCCL_INIT, "Connected collnet + chain");
// Connect intra-node CollNet + Direct
for (int c = 0; c < comm->nChannels; c++) {
struct ncclChannel* channelRecv = comm->channels + c;
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, NCCL_MAX_DIRECT_ARITY, channelRecv->collnetDirect.up, NCCL_MAX_DIRECT_ARITY, channelRecv->collnetDirect.down, 0), ret, fail);
}
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, collNetGraph, 0, &highestTransportType0), ret, fail);
for (int c = 0; c < comm->nChannels; c++) {
struct ncclChannel* channelSend = comm->channels + c;
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, c, NCCL_MAX_DIRECT_ARITY, channelSend->collnetDirect.down, NCCL_MAX_DIRECT_ARITY, channelSend->collnetDirect.up, 1), ret, fail);
}
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, collNetGraph, 1, &highestTransportType1), ret, fail);
// Exchange highest intra-node transport type among ranks
// because we need to know whether all ranks can p2p each other to determine whether we can directly read/write registered user buffer
comm->intraHighestTransportType = highestTypes[comm->localRank] = highestTransportType0 > highestTransportType1 ? highestTransportType0 : highestTransportType1;
if (share) {
comm->intraHighestTransportType = std::max(comm->intraHighestTransportType, parent->intraHighestTransportType);
}
NCCLCHECKGOTO(bootstrapIntraNodeAllGather(comm->bootstrap, comm->localRankToRank, comm->localRank, comm->localRanks, highestTypes, sizeof(int)), ret, fail);
for (int i = 0; i < comm->localRanks; i++) {
if (highestTypes[i] > comm->intraHighestTransportType)
comm->intraHighestTransportType = highestTypes[i];
}
INFO(NCCL_INIT, "rank %d Connected CollNet", rank);
exit:
free(infos);
return ret;
fail:
ncclTransportCollNetFree(comm);
comm->collNetSupport = 0;
goto exit;
}
static ncclResult_t initTransportsRank(struct ncclComm* comm, struct ncclComm* parent = NULL) {
// We use 2 AllGathers
// 1. { peerInfo, comm, compCap}
// 2. { nChannels, graphInfo, topoRanks }
ncclResult_t ret = ncclSuccess;
int rank = comm->rank;
int nranks = comm->nRanks;
cpu_set_t affinitySave;
struct ncclTopoGraph ringGraph;
struct ncclTopoGraph treeGraph;
struct ncclTopoGraph collNetGraph;
struct ncclTopoGraph nvlsGraph;
struct ncclTopoGraph* graphs[] = { &treeGraph, &ringGraph, &collNetGraph, &collNetGraph, &nvlsGraph, &nvlsGraph };
struct graphInfo {
int pattern;
int nChannels;
int sameChannels;
float bwIntra;
float bwInter;
int typeIntra;
int typeInter;
};
struct allGatherInfo {
struct graphInfo graphInfo[NCCL_NUM_ALGORITHMS];
struct ncclTopoRanks topoRanks;
};
int nChannelsOrig;
struct allGatherInfo *allGather3Data = NULL;
struct ncclTopoRanks** allTopoRanks = NULL;
int *nodesFirstRank = NULL, *nodesTreePatterns = NULL;
int *rings = NULL;
int* nvbPeers = NULL;
struct ncclProxyConnector proxyConn;
int* pxnPeers = NULL;
int *topParentLocalRanks = NULL;
int tpProxyRank;
// AllGather1 - begin
NCCLCHECKGOTO(ncclCalloc(&comm->peerInfo, nranks+1), ret, fail); // Extra rank to represent CollNet root
NCCLCHECKGOTO(fillInfo(comm, comm->peerInfo+rank, comm->commHash), ret, fail);
NCCLCHECKGOTO(bootstrapAllGather(comm->bootstrap, comm->peerInfo, sizeof(struct ncclPeerInfo)), ret, fail);
for (int i = 0; i < nranks; i++) {
if ((i != rank) && (comm->peerInfo[i].hostHash == comm->peerInfo[rank].hostHash) && (comm->peerInfo[i].busId == comm->peerInfo[rank].busId)) {
WARN("Duplicate GPU detected : rank %d and rank %d both on CUDA device %lx", rank, i, comm->peerInfo[rank].busId);
ret = ncclInvalidUsage;
goto fail;
}
}
// AllGather1 - end
do {
// Compute intra-process ranks
int intraProcRank0 = -1, intraProcRank = -1, intraProcRanks = 0;
for (int i = 0; i < nranks; i++) comm->minCompCap = std::min(comm->minCompCap, comm->peerInfo[rank].cudaCompCap);
for (int i = 0; i < nranks; i++) comm->maxCompCap = std::max(comm->maxCompCap, comm->peerInfo[rank].cudaCompCap);
for (int i = 0; i < nranks; i++) {
if ((comm->peerInfo[i].hostHash == comm->peerInfo[rank].hostHash)
&& (comm->peerInfo[i].pidHash == comm->peerInfo[rank].pidHash)) {
// Rank is in same process
if (intraProcRanks == 0) intraProcRank0 = i;
if (i == rank) intraProcRank = intraProcRanks;
intraProcRanks++;
if (intraProcRank0 == rank && rank != i) {
comm->peerInfo[i].comm->intraNext = comm->intraNext;
comm->intraNext = comm->peerInfo[i].comm;
}
}
}
TRACE(NCCL_INIT,"pidHash[%d] %lx intraProcRank %d intraProcRanks %d intraProcRank0 %d",
rank, comm->peerInfo[rank].pidHash, intraProcRank, intraProcRanks, intraProcRank0);
if (intraProcRank == -1 || intraProcRank0 == -1 || comm->peerInfo[intraProcRank0].comm == NULL) {
WARN("Failed to determine intra proc ranks rank %d hostHash %lx pidHash %lx intraProcRank %d intraProcRanks %d intraProcRank0 %d",
rank, comm->peerInfo[rank].hostHash, comm->peerInfo[rank].pidHash,
intraProcRank, intraProcRanks, intraProcRank0);
ret = ncclInternalError;
goto fail;
}
struct ncclComm* comm0 = comm->peerInfo[intraProcRank0].comm;
assert(intraProcRank==0 ? comm==comm0 : true);
comm->intraComm0 = comm0;
comm->intraRank = intraProcRank;
comm->intraRanks = intraProcRanks;
comm->intraBarrierPhase = 0;
comm->intraBarrierCounter = 0;
comm->intraBarrierGate = 0;
} while(0);
// Topo detection / System graph creation
NCCLCHECKGOTO(ncclTopoGetSystem(comm, &comm->topo), ret, fail);
// Compute paths between GPUs and NICs
NCCLCHECKGOTO(ncclTopoComputePaths(comm->topo, comm), ret, fail);
// Remove inaccessible GPUs and unused NICs
NCCLCHECKGOTO(ncclTopoTrimSystem(comm->topo, comm), ret, fail);
// Recompute paths after trimming
NCCLCHECKGOTO(ncclTopoComputePaths(comm->topo, comm), ret, fail);
// Init search
NCCLCHECKGOTO(ncclTopoSearchInit(comm->topo), ret, fail);
// Print final topology
NCCLCHECKGOTO(ncclTopoPrint(comm->topo), ret, fail);
// Set Affinity to a CPU local the our GPU, so that all memory we allocate
// on the host is local.
NCCLCHECKGOTO(ncclTopoGetCpuAffinity(comm->topo, comm->rank, &comm->cpuAffinity), ret, fail);
if (CPU_COUNT(&comm->cpuAffinity)) {
sched_getaffinity(0, sizeof(cpu_set_t), &affinitySave);
sched_setaffinity(0, sizeof(cpu_set_t), &comm->cpuAffinity);
}
// Determine local CollNet support
if (collNetSupport(comm)) {
char *collNetEnable = getenv("NCCL_COLLNET_ENABLE");
if (collNetEnable != NULL) {
INFO(NCCL_ALL, "NCCL_COLLNET_ENABLE set by environment to %s.", collNetEnable);
if (strcmp(collNetEnable, "1") == 0) {
comm->collNetSupport = 1;
}
}
}
// Determine local Nvls support
NCCLCHECK(ncclNvlsInit(comm));
// Get rings and trees
ringGraph.id = 0;
ringGraph.pattern = NCCL_TOPO_PATTERN_RING;
ringGraph.collNet = 0;
ringGraph.minChannels = 1;
ringGraph.maxChannels = MAXCHANNELS/2;
NCCLCHECKGOTO(ncclTopoCompute(comm->topo, &ringGraph), ret, fail);
NCCLCHECKGOTO(ncclTopoPrintGraph(comm->topo, &ringGraph), ret, fail);
treeGraph.id = 1;
treeGraph.pattern = NCCL_TOPO_PATTERN_BALANCED_TREE;
treeGraph.collNet = 0;
treeGraph.minChannels = ringGraph.nChannels;
treeGraph.maxChannels = ringGraph.nChannels;
NCCLCHECKGOTO(ncclTopoCompute(comm->topo, &treeGraph), ret, fail);
NCCLCHECKGOTO(ncclTopoPrintGraph(comm->topo, &treeGraph), ret, fail);
collNetGraph.id = 2;
collNetGraph.pattern = NCCL_TOPO_PATTERN_TREE;
collNetGraph.collNet = 1;
collNetGraph.minChannels = collNetGraph.maxChannels = ringGraph.nChannels;
if (comm->collNetSupport) {
NCCLCHECKGOTO(ncclTopoCompute(comm->topo, &collNetGraph), ret, fail);
NCCLCHECKGOTO(ncclTopoPrintGraph(comm->topo, &collNetGraph), ret, fail);
} else {
collNetGraph.nChannels = 0;
}
nvlsGraph.id = 3;
nvlsGraph.pattern = NCCL_TOPO_PATTERN_NVLS;
nvlsGraph.collNet = 0;
nvlsGraph.minChannels = 1;
nvlsGraph.maxChannels = MAXCHANNELS;
if (comm->nvlsSupport) {
NCCLCHECKGOTO(ncclTopoCompute(comm->topo, &nvlsGraph), ret, fail);
NCCLCHECKGOTO(ncclTopoPrintGraph(comm->topo, &nvlsGraph), ret, fail);
} else {
nvlsGraph.nChannels = 0;
}
// Initialize num P2P LL buffers for this communicator
comm->allocP2pNetLLBuffers = ncclParamAllocP2pNetLLBuffers() == 1;
if (comm->rank == ncclParamGraphDumpFileRank()) {
struct ncclTopoGraph* dumpGraphs[4] = { &ringGraph, &treeGraph, &collNetGraph, &nvlsGraph };
NCCLCHECKGOTO(ncclTopoDumpGraphs(comm->topo, 4, dumpGraphs), ret, fail);
}
// AllGather3 - begin
NCCLCHECKGOTO(ncclCalloc(&allGather3Data, nranks), ret, fail);
for (int a=0; a<NCCL_NUM_ALGORITHMS; a++) {
allGather3Data[rank].graphInfo[a].pattern = graphs[a]->pattern;
allGather3Data[rank].graphInfo[a].nChannels = graphs[a]->nChannels;
allGather3Data[rank].graphInfo[a].sameChannels = graphs[a]->sameChannels;
allGather3Data[rank].graphInfo[a].bwIntra = graphs[a]->bwIntra;
allGather3Data[rank].graphInfo[a].bwInter = graphs[a]->bwInter;
allGather3Data[rank].graphInfo[a].typeIntra = graphs[a]->typeIntra;
allGather3Data[rank].graphInfo[a].typeInter = graphs[a]->typeInter;
}
comm->nChannels = std::min(treeGraph.nChannels, ringGraph.nChannels);
NCCLCHECKGOTO(ncclTopoPreset(comm, graphs, &allGather3Data[rank].topoRanks), ret, fail);
NCCLCHECKGOTO(bootstrapAllGather(comm->bootstrap, allGather3Data, sizeof(*allGather3Data)), ret, fail);
// Determine nNodes, firstRanks, ...
NCCLCHECKGOTO(ncclCalloc(&nodesFirstRank, nranks), ret, fail);
NCCLCHECKGOTO(ncclCalloc(&nodesTreePatterns, nranks), ret, fail);
NCCLCHECKGOTO(ncclCalloc(&comm->rankToNode, comm->nRanks), ret, fail);
for (int r=0; r<nranks; r++) {
int node;
int firstRank = allGather3Data[r].topoRanks.ringRecv[0];
for (node=0; node<comm->nNodes && nodesFirstRank[node] != firstRank; node++);
if (node == comm->nNodes) {
comm->nNodes++;
nodesFirstRank[node] = firstRank;
// Record tree pattern of each node as they can be different depending on sm arch
nodesTreePatterns[node] = allGather3Data[r].graphInfo[NCCL_ALGO_TREE].pattern;
}
comm->rankToNode[r] = node;
}
// Now that we know nNodes, alloc nodeRanks and compute localRanks for each node
NCCLCHECKGOTO(ncclCalloc(&comm->nodeRanks, comm->nNodes), ret, fail);
NCCLCHECKGOTO(ncclCalloc(&comm->rankToLocalRank, comm->nRanks), ret, fail);
for (int r=0; r<comm->nRanks; r++) {
int node = comm->rankToNode[r];
comm->rankToLocalRank[r] = comm->nodeRanks[node].localRanks;
comm->nodeRanks[node].localRanks++;
}
// Allocate ranks arrays for each node
for (int n=0; n<comm->nNodes; n++) {
NCCLCHECKGOTO(ncclCalloc(&comm->nodeRanks[n].localRankToRank, comm->nodeRanks[n].localRanks), ret, fail);
comm->maxLocalRanks = std::max(comm->maxLocalRanks, comm->nodeRanks[n].localRanks);
comm->nodeRanks[n].localRanks = 0;
}
// And fill the ranks arrays
for (int r=0; r<comm->nRanks; r++) {
int node = comm->rankToNode[r];
comm->nodeRanks[node].localRankToRank[comm->nodeRanks[node].localRanks++] = r;
}
comm->node = comm->rankToNode[rank];
comm->localRankToRank = comm->nodeRanks[comm->node].localRankToRank;
comm->localRank = comm->rankToLocalRank[rank];
comm->localRanks = comm->nodeRanks[comm->node].localRanks;
TRACE(NCCL_INIT,"hostHash[%d] %lx localRank %d localRanks %d localRank0 %d",
rank, comm->peerInfo[rank].hostHash, comm->localRank, comm->localRanks, comm->localRankToRank[0]);
if (comm->localRank == -1 || comm->localRankToRank[0] == -1 || comm->localRanks == 0) {
WARN("Failed to determine local ranks rank %d hostHash %lx pidHash %lx localRank %d localRanks %d localRank0 %d",
rank, comm->peerInfo[rank].hostHash, comm->peerInfo[rank].pidHash,
comm->localRank, comm->localRanks, comm->localRankToRank[0]);
ret = ncclInternalError;
goto fail;
}
nChannelsOrig = comm->nChannels;
NCCLCHECKGOTO(ncclCalloc(&allTopoRanks, comm->nRanks), ret, fail);
for (int i=0; i<nranks; i++) {
allTopoRanks[i] = &allGather3Data[i].topoRanks;
// Make sure we align all ranks so that the tuning is consistent across ranks
for (int a=0; a<NCCL_NUM_ALGORITHMS; a++) {
graphs[a]->nChannels = std::min(allGather3Data[i].graphInfo[a].nChannels, graphs[a]->nChannels);
graphs[a]->sameChannels = std::min(allGather3Data[i].graphInfo[a].sameChannels, graphs[a]->sameChannels);
graphs[a]->bwIntra = std::min(allGather3Data[i].graphInfo[a].bwIntra, graphs[a]->bwIntra);
graphs[a]->bwInter = std::min(allGather3Data[i].graphInfo[a].bwInter, graphs[a]->bwInter);
graphs[a]->typeIntra = std::max(allGather3Data[i].graphInfo[a].typeIntra, graphs[a]->typeIntra);