-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
82 lines (60 loc) · 2.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import numpy as np
import pandas as pd
import streamlit as st
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import load_model
# Constants
MODEL_PATH = "models/modified_bilstm_attention_model.h5"
LABEL_ENCODER_PATH = './label_classes/le2_classes.npy'
file_path='./sample_input.csv'
# Helper Functions
def load_model(model_path):
"""Load the trained BiLSTM model and the label encoder classes."""
model = load_model(model_path, compile=False)
return model
def preprocess_sample_input(file_path_input):
"""
Load and preprocess the sample input data.
Parameters:
- file_path: str, path to the CSV file containing sample input data.
Returns:
- X_sample: numpy array, preprocessed input data.
"""
# Load the sample CSV data
sample_data = pd.read_csv(file_path_input)
# Preprocess the data (convert to numpy array and reshape)
X_sample = sample_data.values # Convert to numpy array
X_sample = X_sample.reshape((X_sample.shape[0], 1, X_sample.shape[1])) # Reshape to (samples, time_steps, features)
X_sample = np.array(X_sample, dtype='float32') # Ensure the data type is float32
return X_sample
# Function to make predictions and convert indices to class labels
def predict_classes(model, X_sample, le2_classes):
"""
Make predictions using the trained model and convert class indices to labels.
Parameters:
- model: Keras model, the trained model to use for predictions.
- X_sample: numpy array, the preprocessed input data.
- le2_classes: numpy array, the class labels array (from le2_classes.npy).
Returns:
- predicted_class_names: list of predicted class names corresponding to the input data.
"""
# Make predictions
predictions = model.predict(X_sample)
# Get the predicted class indices
predicted_class_indices = np.argmax(predictions, axis=1)
# Convert class indices to class names
predicted_class_names = le2_classes[predicted_class_indices]
return predicted_class_names
# Example usage:
if __name__ == "__main__":
# Load the label encoder classes from le2_classes.npy
le2_classes = np.load('./label_classes/le2_classes.npy', allow_pickle=True)
# Load and preprocess the sample input data
X_sample = preprocess_sample_input(file_path)
# Load the trained model
model = load_model(MODEL_PATH)
# Make predictions and get class names
predicted_class_names = predict_classes(model, X_sample, le2_classes)
# Print the predicted class names
print("Predicted class names:", predicted_class_names)