Skip to content

Latest commit

 

History

History
406 lines (354 loc) · 12.6 KB

File metadata and controls

406 lines (354 loc) · 12.6 KB

图基本介绍

为什么要有图

  1. 前面我们学了线性表和树
  2. 线性表局限于一个直接前驱和一个直接后继的关系
  3. 树也只能有一个直接前驱也就是父节点
  4. 当我们需要表示多对多的关系时, 这里我们就用到了图。

图的举例说明

图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。如图:

graph

图的常用概念

  1. 顶点(vertex)
  2. 边(edge)
  3. 路径
  4. 无向图(如图)

graph

  1. 有向图
  2. 带权图

graph

图的表示方式

图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。

邻接矩阵

邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于 n 个顶点的图而言,矩阵是的 row 和 col 表示的是 1 n 个点。

graph

邻接表

  1. 邻接矩阵需要为每个顶点都分配 n 个边的空间,其实有很多边都是不存在,会造成空间的一定损失.
  2. 邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
  3. 举例说明

graph

图的快速入门案例

  1. 要求: 代码实现如下图结构.

graph

  1. 思路分析 (1) 存储顶点 String 使用 ArrayList (2) 保存矩阵 int[][] edges
  2. 代码实现
//核心代码,汇总在后面
//插入结点
public void insertVertex(String vertex) { 
    vertexList.add(vertex);
}
//添加边
/**
*
*	@param v1 表示点的下标即使第几个顶点	"A"-"B" "A"->0 "B"->1
*	@param v2 第二个顶点对应的下标
*	@param weight 表 示
*/
public void insertEdge(int v1, int v2, int weight) { 
    edges[v1][v2] = weight;
    edges[v2][v1] = weight;    
    numOfEdges++;
}

图的深度优先遍历介绍

图遍历介绍

所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: (1)深度优先遍历 (2)广度优先遍历

深度优先遍历基本思想

图的深度优先搜索(Depth First Search) 。

  1. 深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解: 每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
  2. 我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
  3. 显然,深度优先搜索是一个递归的过程

深度优先遍历算法步骤

  1. 访问初始结点 v,并标记结点 v 为已访问。
  2. 查找结点 v 的第一个邻接结点 w。
  3. 若 w 存在,则继续执行 4,如果 w 不存在,则回到第 1 步,将从 v 的下一个结点继续。
  4. 若 w 未被访问,对 w 进行深度优先遍历递归(即把 w 当做另一个 v,然后进行步骤 123)。
  5. 查找结点 v 的 w 邻接结点的下一个邻接结点,转到步骤 3。
  6. 分析图

graph

深度优先算法的代码实现

//核心代码

//深度优先遍历算法
//i  第一次就是 0
private void dfs(boolean[] isVisited, int i) {
//首先我们访问该结点,输出
    System.out.print(getValueByIndex(i) + "->");
    //将结点设置为已经访问
    isVisited[i] = true;
    //查找结点 i 的第一个邻接结点 
    w int w = getFirstNeighbor(i); 
    while(w != -1) {//说明有
        if(!isVisited[w]) {
            dfs(isVisited, w);
        }
        //如果 w 结点已经被访问过
        w = getNextNeighbor(i, w);
    }
}

//对 dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs 
public void dfs() {
    isVisited = new boolean[vertexList.size()];
//遍历所有的结点,进行 dfs[回溯] 
    for(int i = 0; i < getNumOfVertex(); i++) {
        if(!isVisited[i]) { 
            dfs(isVisited, i);
        }
    }
}

图的广度优先遍历

广度优先遍历基本思想

  1. 图的广度优先搜索(Broad First Search) 。
  2. 类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点

广度优先遍历算法步骤

  1. 访问初始结点 v 并标记结点 v 为已访问。
  2. 结点 v 入队列
  3. 当队列非空时,继续执行,否则算法结束。
  4. 出队列,取得队头结点 u。
  5. 查找结点 u 的第一个邻接结点 w。
  6. 若结点 u 的邻接结点 w 不存在,则转到步骤 3;否则循环执行以下三个步骤: 6.1 若结点 w 尚未被访问,则访问结点 w 并标记为已访问。 6.2 结点 w 入队列 6.3 查找结点 u 的继 w 邻接结点后的下一个邻接结点 w,转到步骤 6。

广度优先算法的图示

graph

广度优先算法的代码实现

//对一个结点进行广度优先遍历的方法
private void bfs(boolean[] isVisited, int i) {
    int u ; // 表示队列的头结点对应下标
    int w ; // 邻接结点 w
    //队列,记录结点访问的顺序
    LinkedList queue = new LinkedList();
    //访问结点,输出结点信息
    System.out.print(getValueByIndex(i) + "=>");   
    //标记为已访问
    isVisited[i] = true;
    //将结点加入队列
    queue.addLast(i);
    while( !queue.isEmpty()) {
        //取出队列的头结点下标
        u = (Integer)queue.removeFirst();
        //得到第一个邻接结点的下标 w 
        w = getFirstNeighbor(u);
        while(w != -1) {//找到
            //是否访问过
            if(!isVisited[w]) { 
                System.out.print(getValueByIndex(w) + "=>");
                //标记已经访问
                isVisited[w] = true;
                //入队
                queue.addLast(w);
            }
            //以 u 为前驱点,找 w 后面的下一个邻结点
            w = getNextNeighbor(u, w); //体现出我们的广度优先
        }
    }
}
//遍历所有的结点,都进行广度优先搜索
public void bfs() {
    isVisited = new boolean[vertexList.size()]; 
    for(int i = 0; i < getNumOfVertex(); i++) {
        if(!isVisited[i]) { 
            bfs(isVisited, i);
        }
    }
}

图的代码汇总

package com.javayh.advanced.datastructure.graph;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;

/**
 * <p>
 * 图
 * </p>
 *
 * @author Dylan
 * @version 1.0.0
 * @since 2021-01-05 5:16 PM
 */
public class Graph {
    private ArrayList<String> vertexList; //存储顶点集合
    private int[][] edges; //存储图对应的邻结矩阵
    private int numOfEdges; //表示边的数目
    //定义给数组 boolean[], 记录某个结点是否被访问
    private boolean[] isVisited;
    public static void main(String[] args) {
    //测试一把图是否创建 ok
    int n = 8;	//结点的个数
    //String Vertexs[] = {"A", "B", "C", "D", "E"};
    String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};

        //创建图对象
        Graph graph = new Graph(n);
        //循环的添加顶点
        for(String vertex: Vertexs) {
            graph.insertVertex(vertex);

        }

        //添加边
        //A-B A-C B-C B-D B-E
        //	graph.insertEdge(0, 1, 1); // A-B
        //	graph.insertEdge(0, 2, 1); //
        //	graph.insertEdge(1, 2, 1); //
        //	graph.insertEdge(1, 3, 1); //
        //	graph.insertEdge(1, 4, 1); //

        //更新边的关系graph.insertEdge(0, 1, 1);
        graph.insertEdge(0, 2, 1);
        graph.insertEdge(1, 3, 1);
        graph.insertEdge(1, 4, 1);
        graph.insertEdge(3, 7, 1);
        graph.insertEdge(4, 7, 1);
        graph.insertEdge(2, 5, 1);
        graph.insertEdge(2, 6, 1);
        graph.insertEdge(5, 6, 1);
        //显示一把邻结矩阵graph.showGraph();

        //测试一把,我们的 dfs 遍历是否 ok
        System.out.println("深度遍历");
        graph.dfs(); // A->B->C->D->E [1->2->4->8->5->3->6->7]
        System.out.println();
        System.out.println("广度优先!");
        graph.bfs(); // A->B->C->D-E [1->2->3->4->5->6->7->8]
}
    //构造器
    public Graph(int n) {
        //初始化矩阵和 vertexList
        edges = new int[n][n];
        vertexList = new ArrayList<String>(n);
        numOfEdges = 0;
    }

    //得到第一个邻接结点的下标 w
    /**
     *
     *	@param index
     *	@return 如果存在就返回对应的下标,否则返回-1
     */
    public int getFirstNeighbor(int index) {
        for(int j = 0; j < vertexList.size(); j++) {
            if(edges[index][j] > 0) {
                return j;
            }
        }
        return -1;
    }

    //根据前一个邻接结点的下标来获取下一个邻接结点
    public int getNextNeighbor(int v1, int v2) {
        for(int j = v2 + 1; j < vertexList.size(); j++) {
            if(edges[v1][j] > 0) {
                return j;
            }
        }
        return -1;
    }
    //深度优先遍历算法
    //i 第一次就是 0
    private void dfs(boolean[] isVisited, int i) {
        //首先我们访问该结点,输出
        System.out.print(getValueByIndex(i) + "->");
        //将结点设置为已经访问
        isVisited[i] = true;
        //查找结点 i 的第一个邻接结点 w
        int w = getFirstNeighbor(i);
        while(w != -1) {//说明有
            if(!isVisited[w]) {
                dfs(isVisited, w);
            }
            //如果 w 结点已经被访问过
            w = getNextNeighbor(i, w);
        }
    }
    //对 dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs
    public void dfs() {
        isVisited = new boolean[vertexList.size()];
        //遍历所有的结点,进行 dfs[回溯]
        for(int i = 0; i < getNumOfVertex(); i++) {
            if(!isVisited[i]) {
                dfs(isVisited, i);
            }
        }
    }


    //对一个结点进行广度优先遍历的方法
    private void bfs(boolean[] isVisited, int i) {
        int u ; // 表示队列的头结点对应下标
        int w ; // 邻接结点 w
        //队列,记录结点访问的顺序
        LinkedList queue = new LinkedList();
        //访问结点,输出结点信息
        System.out.print(getValueByIndex(i) + "=>");
        //标记为已访问
        isVisited[i] = true;
        //将结点加入队列
        queue.addLast(i);
        while( !queue.isEmpty()) {
        //取出队列的头结点下标
        u = (Integer)queue.removeFirst();
        //得到第一个邻接结点的下标 w
        w = getFirstNeighbor(u);
        while(w != -1) {//找到
            //是否访问过
            if(!isVisited[w]) {
                System.out.print(getValueByIndex(w) + "=>");
                //标记已经访问
                isVisited[w] = true;
                //入队
                queue.addLast(w);
            }
            //以 u 为前驱点,找 w 后面的下一个邻结点
            w = getNextNeighbor(u, w); //体现出我们的广度优先
            }
        }
    }

    //遍历所有的结点,都进行广度优先搜索
    public void bfs() {
        isVisited = new boolean[vertexList.size()];
        for(int i = 0; i < getNumOfVertex(); i++) {
            if(!isVisited[i]) {
                bfs(isVisited, i);
            }
        }
    }

    //图中常用的方法
    //返回结点的个数
    public int getNumOfVertex() {
        return vertexList.size();
    }

    //显示图对应的矩阵
    public void showGraph() {
        for(int[] link : edges) {
            System.err.println(Arrays.toString(link));
        }
    }

    //得到边的数目
    public int getNumOfEdges() {
        return numOfEdges;
    }
    //返回结点 i(下标)对应的数据 0->"A" 1->"B" 2->"C"
    public String getValueByIndex(int i) {
        return vertexList.get(i);
    }
    //返回 v1 和 v2 的权值
    public int getWeight(int v1, int v2) {
        return edges[v1][v2];
    }
    //插入结点
    public void insertVertex(String vertex) {
        vertexList.add(vertex);
    }
    //添加边
    /**
     *
     *	@param v1 表示点的下标即使第几个顶点	"A"-"B" "A"->0 "B"->1
     *	@param v2 第二个顶点对应的下标
     *	@param weight 表 示
     */
    public void insertEdge(int v1, int v2, int weight) {
        edges[v1][v2] = weight;
        edges[v2][v1] = weight;
        numOfEdges++;
    }
}