MLHEP'19 slides and notebooks

- Day 1:
- Figures of Merit, overfitting (MLE vs MAP vs AP)

- Day 2:
- Ensembles of models; bagging, boosting, random forest

- Clustering

- Day 3:
- Computing gradient by hand. Pytorch

- Convolutional Neural Networks
;
- Model Zoo:

- Day 4:
- Bayesian 2

- Day 5
- Learning to Pivot:
- toy example 1:

- toy example 2:

- toy example 3:

- SUSY exercise:

- Language modeling

- Tracking

- Day 6
- Introductory example 1 :

- Introductory example 2 :

- Practice :

- GANs 1

- GANs 2

- GANs 3

- Day 8
- Black-Box:
- ABO:

- AVO:

- NN optimisation
- 1-scikit-search:

- 2-skorch:

- 3-bayesian_optimization:

- 4-skorch_comet:

- 5-skorch_skopt_comet:

- Independence of NN classifier from a continuous parameter:
