-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrt_inference.py
46 lines (36 loc) · 1.37 KB
/
trt_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from models import RetinaFaceTRT
import cv2
from utils.visualization import draw_detections
# Initialize the RetinaFace TensorRT model
uniface_inference = RetinaFaceTRT(
engine_path="weights/model.engine", # TensorRT engine path
conf_thresh=0.5, # Confidence threshold
pre_nms_topk=5000, # Pre-NMS Top-K detections
nms_thresh=0.4, # NMS IoU threshold
post_nms_topk=750, # Post-NMS Top-K detections
dynamic_size=False, # Fixed image size inference
input_size=(640, 640) # Pre-defined input size
)
# Initialize webcam
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Error: Unable to access the webcam.")
exit()
while True:
# Capture frame
ret, frame = cap.read()
if not ret:
print("Error: Failed to read frame.")
break
# Perform face detection using TensorRT inference
boxes, landmarks = uniface_inference.detect(frame)
# Draw detections
draw_detections(frame, (boxes, landmarks), vis_threshold=0.6)
# Display frame
cv2.imshow("TensorRT Webcam Inference", frame)
# Exit on 'q' key
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release resources
cap.release()
cv2.destroyAllWindows()