-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_reid.py
44 lines (27 loc) · 1018 Bytes
/
face_reid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from models.arcface_onnx import ArcFace
from models.retinaface_onnx import RetinaFace
import numpy as np
import cv2
image1_path = "assets/1_01.jpg"
image2_path = "assets/2_02.jpg"
model = ArcFace(model_path="weights/w600k_mbf.onnx")
retina = RetinaFace(model_path="weights/retinaface_mv2_static.onnx")
img1 = cv2.imread(image1_path)
img2 = cv2.imread(image2_path)
_, kpt1 = retina.detect(img1)
_, kpt2 = retina.detect(img2)
def compute_similarity(feat1: np.ndarray, feat2: np.ndarray) -> np.float32:
"""Computing Similarity between two faces.
Args:
feat1 (np.ndarray): Face features.
feat2 (np.ndarray): Face features.
Returns:
np.float32: Cosine similarity between face features.
"""
feat1 = feat1.ravel()
feat2 = feat2.ravel()
similarity = np.dot(feat1, feat2) / (np.linalg.norm(feat1) * np.linalg.norm(feat2))
return similarity
feat1 = model(img1, kps=kpt1[:1][0])
feat2 = model(img2, kps=kpt2[:1][0])
print(compute_similarity(feat1, feat2))