-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathapp_perplexity.py
212 lines (171 loc) · 7.98 KB
/
app_perplexity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import streamlit as st
import json
import time
import requests # Add this import for making HTTP requests to Ollama
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
# Get configuration from .env file
PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_API_KEY")
PERPLEXITY_MODEL = os.getenv("PERPLEXITY_MODEL", "llama-3.1-sonar-small-128k-online")
if not PERPLEXITY_API_KEY:
raise ValueError("PERPLEXITY_API_KEY is not set in the .env file")
def make_api_call(messages, max_tokens, is_final_answer=False):
for attempt in range(3):
try:
url = "https://api.perplexity.ai/chat/completions"
payload = {"model": PERPLEXITY_MODEL, "messages": messages}
headers = {
"Authorization": f"Bearer {PERPLEXITY_API_KEY}",
"Content-Type": "application/json",
}
print(f"payload: {payload}")
response = requests.request("POST", url, json=payload, headers=headers)
print(f"Response status code: {response.status_code}")
print(f"Response content: {response.text}")
response.raise_for_status()
response_json = response.json()
content = response_json["choices"][0]["message"]["content"]
# Try to parse the content as JSON
try:
return json.loads(content)
except json.JSONDecodeError:
# If parsing fails, return the content as is
return {
"title": "Raw Response",
"content": content,
"next_action": "final_answer" if is_final_answer else "continue"
}
except requests.exceptions.HTTPError as e:
if response.status_code == 400:
error_message = f"400 Bad Request: {response.text}"
print(error_message)
if attempt == 2:
return {
"title": "Error",
"content": error_message,
"next_action": "final_answer",
}
else:
# Handle other HTTP errors
if attempt == 2:
error_message = f"HTTP error occurred: {str(e)}"
return {
"title": "Error",
"content": error_message,
"next_action": "final_answer",
}
except json.JSONDecodeError:
if attempt == 2:
return {
"title": "Error",
"content": f"Failed to parse API response: {response.text}",
"next_action": "final_answer",
}
except requests.exceptions.RequestException as e:
if attempt == 2:
error_message = f"API request failed after 3 attempts. Error: {str(e)}"
return {
"title": "Error",
"content": error_message,
"next_action": "final_answer",
}
time.sleep(1) # Wait for 1 second before retrying
def generate_response(prompt):
messages = [
{
"role": "system",
"content": """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES.
Example of a valid JSON response:
```json
{
"title": "Identifying Key Information",
"content": "To begin solving this problem, we need to carefully examine the given information and identify the crucial elements that will guide our solution process. This involves...",
"next_action": "continue"
}```
""",
},
{"role": "user", "content": prompt},
]
steps = []
step_count = 1
total_thinking_time = 0
while True:
start_time = time.time()
step_data = make_api_call(messages, 300)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append(
(
f"Step {step_count}: {step_data['title']}",
step_data["content"],
thinking_time,
)
)
messages.append({"role": "assistant", "content": json.dumps(step_data)})
if step_data["next_action"] == "final_answer":
break
step_count += 1
# Add a user message to maintain alternation
messages.append({"role": "user", "content": "Continue with the next step."})
# Yield after each step for Streamlit to update
yield steps, None # We're not yielding the total time until the end
# Generate final answer
messages.append(
{
"role": "user",
"content": "Please provide the final answer based on your reasoning above.",
}
)
start_time = time.time()
final_data = make_api_call(messages, 200, is_final_answer=True)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append(("Final Answer", final_data["content"], thinking_time))
yield steps, total_thinking_time
def main():
st.set_page_config(page_title="p1 prototype - Perplexity version", page_icon="🧠", layout="wide")
st.title("ol1: Using Perplexity AI to create o1-like reasoning chains")
st.markdown(
"""
This is an early prototype of using prompting to create o1-like reasoning chains to improve output accuracy. It is not perfect and accuracy has yet to be formally evaluated. It is powered by Perplexity AI API!
Forked from [bklieger-groq](https://github.com/bklieger-groq)
Open source [repository here](https://github.com/tcsenpai/ol1-p1)
"""
)
st.markdown(f"**Current Configuration:**")
st.markdown(f"- Perplexity AI Model: `{PERPLEXITY_MODEL}`")
# Text input for user query
user_query = st.text_input(
"Enter your query:",
placeholder="e.g., How many 'R's are in the word strawberry?",
)
if user_query:
st.write("Generating response...")
# Create empty elements to hold the generated text and total time
response_container = st.empty()
time_container = st.empty()
# Generate and display the response
for steps, total_thinking_time in generate_response(user_query):
with response_container.container():
for i, (title, content, thinking_time) in enumerate(steps):
if title.startswith("Final Answer"):
st.markdown(f"### {title}")
st.markdown(
content.replace("\n", "<br>"), unsafe_allow_html=True
)
else:
with st.expander(title, expanded=True):
st.markdown(
content.replace("\n", "<br>"), unsafe_allow_html=True
)
# Only show total time when it's available at the end
if total_thinking_time is not None:
time_container.markdown(
f"**Total thinking time: {total_thinking_time:.2f} seconds**"
)
if __name__ == "__main__":
main()