-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprofile-solve.py
188 lines (158 loc) · 7.74 KB
/
profile-solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from argparse import ArgumentParser
import importlib
import os
import sys
import cPickle
import pandas
from collections import defaultdict
from firedrake import COMM_WORLD, parameters
from firedrake.petsc import PETSc
from mpi4py import MPI
parameters["pyop2_options"]["lazy_evaluation"] = False
PETSc.Log.begin()
parser = ArgumentParser(description="""Profile solves""", add_help=False)
parser.add_argument("--problem", choices=["poisson",
"elasticity",
"navier_stokes",
"rayleigh_benard"],
help="Which problem to profile")
parser.add_argument("--results-file", action="store", default="solve-timings.csv",
help="Where to put the results")
parser.add_argument("--overwrite", action="store_true", default=False,
help="Overwrite existing output? Default is to append.")
parser.add_argument("--refinements", action="store", default=0,
type=int,
help="How many regular refinements to make to the mesh once it is distributed.")
parser.add_argument("--parameters", default=None, action="store",
help="Select specific parameter set?")
parser.add_argument("--help", action="store_true",
help="Show help")
args, _ = parser.parse_known_args()
if args.help:
help = parser.format_help()
PETSc.Sys.Print("%s\n" % help)
if args.problem is None:
PETSc.Sys.Print("Must provide problem type\n")
sys.exit(1)
module = importlib.import_module("problem.%s" % args.problem)
problem = module.Problem(refinements=args.refinements)
if args.parameters is not None:
if args.parameters not in problem.parameter_names:
raise ValueError("Unrecognised parameter '%s', not in %s", args.parameters,
problem.parameter_names)
parameter_names = [args.parameters]
else:
parameter_names = problem.parameter_names
results = os.path.abspath(args.results_file)
warm = defaultdict(bool)
def run_solve(problem, degree, size):
first = True
problem.reinit(degree=degree, size=size)
for name in parameter_names:
parameters = getattr(problem, name)
solver = problem.solver(parameters=parameters)
PETSc.Sys.Print("\nSolving with parameter set %s, %s, %s..." % (name, problem.N, problem.degree))
if not warm[(name, degree)]:
PETSc.Sys.Print("Warmup solve")
problem.u.assign(0)
with PETSc.Log.Stage("Warmup"):
try:
solver.solve()
except:
PETSc.Sys.Print("Unable to solve %s, %s, %s" % (name, problem.N, problem.degree))
PETSc.Sys.Print("************************************")
import traceback
PETSc.Sys.Print(*traceback.format_stack())
PETSc.Sys.Print("************************************")
continue
warm[(name, degree)] = True
problem.u.assign(0)
PETSc.Sys.Print("Timed solve")
solver.snes.setConvergenceHistory()
solver.snes.ksp.setConvergenceHistory()
with PETSc.Log.Stage("P(%d, %d) Warm solve %s" % (degree, size, name)):
try:
solver.solve()
snes = PETSc.Log.Event("SNESSolve").getPerfInfo()
ksp = PETSc.Log.Event("KSPSolve").getPerfInfo()
pcsetup = PETSc.Log.Event("PCSetUp").getPerfInfo()
pcapply = PETSc.Log.Event("PCApply").getPerfInfo()
jac = PETSc.Log.Event("SNESJacobianEval").getPerfInfo()
residual = PETSc.Log.Event("SNESFunctionEval").getPerfInfo()
snes_time = problem.comm.allreduce(snes["time"], op=MPI.SUM) / problem.comm.size
jac_time = problem.comm.allreduce(jac["time"], op=MPI.SUM) / problem.comm.size
residual_time = problem.comm.allreduce(residual["time"], op=MPI.SUM) / problem.comm.size
ksp_time = problem.comm.allreduce(ksp["time"], op=MPI.SUM) / problem.comm.size
pcsetup_time = problem.comm.allreduce(pcsetup["time"], op=MPI.SUM) / problem.comm.size
pcapply_time = problem.comm.allreduce(pcapply["time"], op=MPI.SUM) / problem.comm.size
newton_its = solver.snes.getIterationNumber()
ksp_its = solver.snes.getLinearSolveIterations()
num_cells = problem.comm.allreduce(problem.mesh.cell_set.size, op=MPI.SUM)
if COMM_WORLD.rank == 0:
if not os.path.exists(os.path.dirname(results)):
os.makedirs(os.path.dirname(results))
if args.overwrite:
if first:
mode = "w"
header = True
else:
mode = "a"
header = False
first = False
else:
mode = "a"
header = not os.path.exists(results)
snes_history, linear_its = solver.snes.getConvergenceHistory()
ksp_history = solver.snes.ksp.getConvergenceHistory()
data = {"snes_its": newton_its,
"ksp_its": ksp_its,
"snes_history": cPickle.dumps(snes_history),
"linear_its": cPickle.dumps(linear_its),
"ksp_history": cPickle.dumps(ksp_history),
"SNESSolve": snes_time,
"KSPSolve": ksp_time,
"PCSetUp": pcsetup_time,
"PCApply": pcapply_time,
"JacobianEval": jac_time,
"FunctionEval": residual_time,
"num_processes": problem.comm.size,
"mesh_size": problem.N * (2**args.refinements),
"num_cells": num_cells,
"dimension": problem.dimension,
"degree": problem.degree,
"solver_parameters": cPickle.dumps(solver.parameters),
"parameter_name": name,
"dofs": problem.u.dof_dset.layout_vec.getSize(),
"name": problem.name}
df = pandas.DataFrame(data, index=[0])
df.to_csv(results, index=False, mode=mode, header=header)
except:
PETSc.Sys.Print("Unable to solve %s, %s, %s" % (name, problem.N, problem.degree))
PETSc.Sys.Print("************************************")
import traceback
PETSc.Sys.Print(*traceback.format_stack())
PETSc.Sys.Print("************************************")
continue
PETSc.Sys.Print("Solving with parameter set %s, %s, %s...done" % (name, problem.N, problem.degree))
# Sizes for one node
if args.problem == "poisson":
if problem.dimension == 2:
sizes = [16, 32, 64, 128, 256, 512]
degrees = range(1, 5)
elif problem.dimension == 3:
sizes = [8, 16, 32, 64]
degrees = range(1, 5)
else:
raise ValueError("Unhandled dimension %d", problem.dimension)
elif args.problem == "rayleigh_benard":
if problem.dimension == 2:
sizes = [16, 32, 64, 128, 256, 512]
degrees = range(1, 3)
elif problem.dimension == 3:
sizes = [8, 16, 32, 64]
degrees = range(1, 3)
else:
raise ValueError("Unhandled problem %s", args.problem)
for size in sizes:
for degree in degrees:
run_solve(problem, degree, size)