-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsparsification_test.py
47 lines (41 loc) · 1.43 KB
/
sparsification_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from __future__ import division
import graph_util
import sparsification
import networkx
import random
import sys
import time
if len(sys.argv) is not 7:
print 'usage: %s <num trials> <num vertices> <num edges> <min capacity> <max capacity> <epsilon>' % sys.argv[0]
exit(1)
n_trials = int(sys.argv[1])
n = int(sys.argv[2])
m = int(sys.argv[3])
max_cap = float(sys.argv[4])
min_cap = float(sys.argv[5])
epsilon = float(sys.argv[6])
g = networkx.Graph()
all_edges = [(i, j) for i in range(n) for j in range(i+1,n)]
random.shuffle(all_edges)
g.add_edges_from(all_edges[:m])
for e in g.edges():
cap = random.random() * (max_cap - min_cap) + min_cap
graph_util.set_edge_capacity(g, e, cap)
min_cut_actual = networkx.min_cut(g, 0, 1, capacity='capacity')
total_elapsed = 0
for i in range(n_trials):
print 'trial: %d' % i
t_start = time.clock()
if max_cap == min_cap:
sparse_g = sparsification.sparsify(g, epsilon)
else:
sparse_g = sparsification.weighted_sparsify(g, epsilon)
elapsed_time = time.clock() - t_start
total_elapsed += elapsed_time
min_cut_sparsed = networkx.min_cut(sparse_g, 0, 1, capacity='capacity')
error = abs(min_cut_sparsed - min_cut_actual) / abs(min_cut_actual)
print '|E sparse| / |E|: %f' % (sparse_g.number_of_edges() / g.number_of_edges())
print 'relative error: %f' % error
print 'elapsed time: %f' % elapsed_time
print '================'
print 'elapsed time, average: %f' % (total_elapsed / n_trials)