-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_relu.py
42 lines (32 loc) · 1.01 KB
/
nn_relu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
from torch.nn import ReLU
from torch.nn import Sigmoid
from torch import nn
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10(root="./dataset",transform=torchvision.transforms.ToTensor(), train=True,download=True)
dataloader = DataLoader(dataset, batch_size=64,num_workers=2)
input = torch.Tensor([[1, -1],
[2, -1]])
input = torch.reshape(input,(-1, 1, 2, 2))
class LearnRelu(nn.Module):
def __init__(self):
super(LearnRelu, self).__init__()
self.relu = ReLU()
self.sigmoid = Sigmoid()
def forward(self,x):
#output = self.relu(x)
output = self.sigmoid(x)
return output
learnrelu = LearnRelu()
#output = learnrelu(input)
#print(output)
writer = SummaryWriter("logs")
step = 0
for data in dataloader:
imgs, target = data
imgs = learnrelu(imgs)
writer.add_images("nn_sigmoid",imgs,step)
step += 1
writer.close()