forked from huggingface/datasets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
141 lines (116 loc) · 4.31 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Lint as: python3
"""HuggingFace/NLP is an open library of NLP datasets.
Simple check list for release from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
To create the package for pypi.
1. Change the version in __init__.py, setup.py as well as docs/source/conf.py.
2. Commit these changes with the message: "Release: VERSION"
3. Add a tag in git to mark the release: "git tag VERSION -m'Adds tag VERSION for pypi' "
Push the tag to git: git push --tags origin master
4. Build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
For the wheel, run: "python setup.py bdist_wheel" in the top level directory.
(this will build a wheel for the python version you use to build it).
For the sources, run: "python setup.py sdist"
You should now have a /dist directory with both .whl and .tar.gz source versions.
5. Check that everything looks correct by uploading the package to the pypi test server:
twine upload dist/* -r pypitest
(pypi suggest using twine as other methods upload files via plaintext.)
You may have to specify the repository url, use the following command then:
twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
Check that you can install it in a virtualenv by running:
pip install -i https://testpypi.python.org/pypi nlp
6. Upload the final version to actual pypi:
twine upload dist/* -r pypi
7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory.
8. Update the documentation commit in .circleci/deploy.sh for the accurate documentation to be displayed
9. Update README.md to redirect to correct documentation.
"""
import datetime
import itertools
import os
import sys
from setuptools import find_packages
from setuptools import setup
DOCLINES = __doc__.split('\n')
REQUIRED_PKGS = [
'numpy',
# Backend and serialization
'pyarrow>=0.16.0',
# For smart caching dataset processing
'dill',
# For performance gains with apache arrow
'pandas',
# for downloading datasets over HTTPS
'requests>=2.19.0',
# progress bars in download and scripts
"tqdm >= 4.27",
# dataclasses for Python versions that don't have it
"dataclasses;python_version<'3.7'",
# filesystem locks e.g. to prevent parallel downloads
"filelock",
]
TESTS_REQUIRE = [
'apache-beam',
'absl-py',
'bs4',
'elasticsearch',
'faiss-cpu',
'langdetect',
'mwparserfromhell',
'nltk',
'pytest',
'pytest-xdist',
'tensorflow',
'torch',
'tldextract',
'zstandard'
]
QUALITY_REQUIRE = [
"black",
"isort @ git+git://github.com/timothycrosley/isort.git@e63ae06ec7d70b06df9e528357650281a3d3ec22#egg=isort",
"flake8==3.7.9",
]
EXTRAS_REQUIRE = {
'apache-beam': ['apache-beam'],
'tensorflow': ['tensorflow>=2.2.0'],
'tensorflow_gpu': ['tensorflow-gpu>=2.2.0'],
'torch': ['torch'],
'dev': TESTS_REQUIRE + QUALITY_REQUIRE,
'tests': TESTS_REQUIRE,
'quality': QUALITY_REQUIRE,
'docs': ["recommonmark", "sphinx", "sphinx-markdown-tables", "sphinx-rtd-theme==0.4.3", "sphinx-copybutton"]
}
setup(
name='nlp',
version="0.3.0",
description=DOCLINES[0],
long_description='\n'.join(DOCLINES[2:]),
author='HuggingFace Inc.',
author_email='[email protected]',
url='https://github.com/huggingface/nlp',
download_url='https://github.com/huggingface/nlp/tags',
license='Apache 2.0',
package_dir={"": "src"},
packages=find_packages("src"),
package_data={
'nlp': [
'scripts/templates/*',
],
},
scripts=["nlp-cli"],
install_requires=REQUIRED_PKGS,
extras_require=EXTRAS_REQUIRE,
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
keywords='nlp machine learning datasets metrics',
)