-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathbase_trainer.py
181 lines (137 loc) · 5.98 KB
/
base_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import re
import torch
import math
import numpy as np
import torchvision.utils as vutils
from PIL import Image, ImageDraw, ImageFont
from utils.checkpoints import Checkpoint
try: # backward compatibility
from tensorboardX import SummaryWriter
except ImportError:
from torch.utils.tensorboard import SummaryWriter
from core.config import cfg, cfg_from_file, cfg_from_list
class BaseTrainer(object):
def __del__(self):
# commented out, because hangs on exit
# (presumably some bug with threading in TensorboardX)
"""
if not self.quiet:
self.writer.close()
self.writer_val.close()
"""
pass
def __init__(self, args, quiet=False):
self.args = args
self.quiet = quiet
# config
# Reading the config
if type(args.cfg_file) is str \
and os.path.isfile(args.cfg_file):
cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
self.start_epoch = 0
self.best_score = -1e16
self.checkpoint = Checkpoint(args.snapshot_dir, max_n = 5)
if not quiet:
#self.model_id = "%s" % args.run
logdir = os.path.join(args.logdir, 'train')
logdir_val = os.path.join(args.logdir, 'val')
self.writer = SummaryWriter(logdir)
self.writer_val = SummaryWriter(logdir_val)
def _define_checkpoint(self, name, model, optim):
self.checkpoint.add_model(name, model, optim)
def _load_checkpoint(self, suffix):
if self.checkpoint.load(suffix):
# loading the epoch and the best score
tmpl = re.compile("^e(\d+)Xs([\.\d+\-]+)$")
match = tmpl.match(suffix)
if not match:
print("Warning: epoch and score could not be recovered")
return
else:
epoch, score = match.groups()
self.start_epoch = int(epoch) + 1
self.best_score = float(score)
def checkpoint_epoch(self, score, epoch):
if score > self.best_score:
self.best_score = score
print(">>> Saving checkpoint with score {:3.2e}, epoch {}".format(score, epoch))
suffix = "e{:03d}Xs{:4.3f}".format(epoch, score)
self.checkpoint.checkpoint(suffix)
return True
def checkpoint_best(self, score, epoch):
if score > self.best_score:
print(">>> Saving checkpoint with score {:3.2e}, epoch {}".format(score, epoch))
self.best_score= score
suffix = "e{:03d}Xs{:4.3f}".format(epoch, score)
self.checkpoint.checkpoint(suffix)
return True
return False
@staticmethod
def get_optim(params, cfg):
if not hasattr(torch.optim, cfg.OPT):
print("Optimiser {} not supported".format(cfg.OPT))
raise NotImplementedError
optim = getattr(torch.optim, cfg.OPT)
if cfg.OPT == 'Adam':
upd = torch.optim.Adam(params, lr=cfg.LR, \
betas=(cfg.BETA1, 0.999), \
weight_decay=cfg.WEIGHT_DECAY)
elif cfg.OPT == 'SGD':
print("Using SGD >>> learning rate = {:4.3e}, momentum = {:4.3e}, weight decay = {:4.3e}".format(cfg.LR, cfg.MOMENTUM, cfg.WEIGHT_DECAY))
upd = torch.optim.SGD(params, lr=cfg.LR, \
momentum=cfg.MOMENTUM, \
weight_decay=cfg.WEIGHT_DECAY)
else:
upd = optim(params, lr=cfg.LR)
upd.zero_grad()
return upd
@staticmethod
def set_lr(optim, lr):
for param_group in optim.param_groups:
param_group['lr'] = lr
def _visualise_grid(self, x_all, labels, t, ious=None, tag="visualisation", scores=None):
# adding the labels to images
bs, ch, h, w = x_all.size()
x_all_new = torch.zeros(bs, ch, h + 16, w)
_, y_labels_idx = torch.max(labels, -1)
classNamesOffset = len(self.classNames) - labels.size(1)
classNames = self.classNames[classNamesOffset:]
for b in range(bs):
label_idx = labels[b]
label_names = [name for i,name in enumerate(classNames) if label_idx[i].item()]
label_name = ", ".join(label_names)
ndarr = x_all[b].mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
arr = np.zeros((16, w, ch), dtype=ndarr.dtype)
ndarr = np.concatenate((arr, ndarr), 0)
im = Image.fromarray(ndarr)
draw = ImageDraw.Draw(im)
font = ImageFont.truetype("fonts/UbuntuMono-R.ttf", 12)
# draw.text((x, y),"Sample Text",(r,g,b))
draw.text((5, 1), label_name, (255,255,255), font=font)
im_np = np.array(im).astype(np.float)
x_all_new[b] = (torch.from_numpy(im_np)/255.0).permute(2,0,1)
summary_grid = vutils.make_grid(x_all_new, nrow=1, padding=8, pad_value=0.9)
self.writer.add_image(tag, summary_grid, t)
def _apply_cmap(self, mask_idx, mask_conf):
palette = self.trainloader.dataset.get_palette()
masks = []
col = Colorize()
mask_conf = mask_conf.float() / 255.0
for mask, conf in zip(mask_idx.split(1), mask_conf.split(1)):
m = col(mask).float()
m = m * conf
masks.append(m[None, ...])
return torch.cat(masks, 0)
def _mask_rgb(self, masks, image_norm, alpha=0.3):
# visualising masks
masks_conf, masks_idx = torch.max(masks, 1)
masks_conf = masks_conf - F.relu(masks_conf - 1, 0)
masks_idx_rgb = self._apply_cmap(masks_idx.cpu(), masks_conf.cpu())
return alpha * image_norm + (1 - alpha) * masks_idx_rgb
def _init_norm(self):
self.trainloader.dataset.set_norm(self.enc.normalize)
self.valloader.dataset.set_norm(self.enc.normalize)
self.trainloader_val.dataset.set_norm(self.enc.normalize)