-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcol_loss.py
240 lines (211 loc) · 9.4 KB
/
col_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python
"""
Minimum script to load expert data and evaluate CoL loss.
"""
__author__ = "Vinicius Guimaraes Goecks"
__date__ = "July 19, 2019"
# import
import argparse
import sys, os
import gym
import pybulletgym
import numpy as np
sys.path.append('../')
import hri_airsim
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="whitegrid", font_scale=1.25)
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
# DDPG DEPENDENCIES
from stable_baselines.ddpg.policies import MlpPolicy
from stable_baselines import DDPG
from stable_baselines.ddpg.noise import OrnsteinUhlenbeckActionNoise
from stable_baselines.ddpg.noise import NormalActionNoise
# PPO DEPENDENCIES
from stable_baselines import PPO2
from stable_baselines.common.policies import MlpPolicy as MlpPolicyPPO2
# COMMON DEPENDENCIES
from stable_baselines.common.vec_env import DummyVecEnv, VecNormalize
from stable_baselines.gail import generate_expert_traj, ExpertDataset
from stable_baselines.bench import Monitor
from stable_baselines.common import set_global_seeds
# CUSTOM AGENTS AND POLICIES
from ddpg_col import DDPG_CoL
from policies import MlpPolicyDropout
# USE PyQtGraph GUI
import threading
from gui.airsim_gui import GUI
USE_PYQTGUI = True
# GLOBAL
n_steps_eval = 0
n_steps_save = 0
def main(**kwargs):
# callback to evaluate models during training
def eval_callback(_locals, _globals):
"""
Evaluate model for a given number of episodes and save mean total
reward and its standard deviation.
"""
global n_steps_eval
# save model after a given number of steps
if (n_steps_eval + 1) % 20000 == 0:
# run model for a given number of episodes
mean_rew, std_rew = _locals['self']._eval_model(n_epi_eval=100)
# write results to file
_locals['self']._write_log(log_mode='eval', step=0,
data=[mean_rew, std_rew])
n_steps_eval += 1
return True
# callback to save models during training
def save_model_callback(_locals, _globals):
"""
Save training models after a given amount of training steps.
"""
global n_steps_save
# save model after a given number of steps
if (n_steps_save + 1) % 5000 == 0:
print("Saving RL model at episode {} ({})".format(
n_steps_save+1, data_addr))
_locals['self'].save('{}/model_step{}.pkl'.format(
model_name, n_steps_save+1))
n_steps_save += 1
return True
# ------------------------------------------------------------------
# LOG DATA AND ENVIRONMENT
# ------------------------------------------------------------------
env_gym = gym.make(kwargs['env'])
env = DummyVecEnv([lambda: env_gym])
# # normalizes environment
# env = VecNormalize(env, norm_obs=False, norm_reward=True)
# enable gui
if USE_PYQTGUI:
gui_thread = threading.Thread(target=GUI, args=(env,))
gui_thread.start()
data_addr = kwargs['data_addr']
# use same data_addr to save models
model_name = kwargs['data_addr'] # kwargs['model_name']
bc_model_name = kwargs['bc_model_name']
dataset_addr = kwargs['dataset_addr']
# ------------------------------------------------------------------
# CoL LEARNING AGENT
# ------------------------------------------------------------------
n_actions = env.action_space.shape[-1]
action_noise = NormalActionNoise(
mean=np.zeros(n_actions), sigma=float(kwargs['action_noise_sigma']) * np.ones(n_actions))
policy_kwargs = dict(
act_fun=tf.nn.elu,
layers=kwargs['n_layers']*[kwargs['n_neurons']])
# ## USING DDPG_CoL
model = DDPG_CoL(
MlpPolicyDropout, env, policy_kwargs=policy_kwargs, verbose=0,
param_noise=None, action_noise=action_noise,
tensorboard_log=None,
batch_size=kwargs['batch_size'],
dataset_addr=dataset_addr,
lambda_ac_di_loss=kwargs['lambda_ac_di_loss'],
lambda_ac_qloss=kwargs['lambda_ac_qloss'],
lambda_qloss=kwargs['lambda_qloss'],
lambda_n_step=kwargs['lambda_n_step'],
critic_l2_reg=kwargs['critic_l2_reg'],
actor_l2_reg=kwargs['actor_l2_reg'],
act_prob_expert_schedule=kwargs['act_prob_expert_schedule'],
train_steps=kwargs['train_steps'],
bc_model_name=kwargs['bc_model_name'],
schedule_steps=kwargs['schedule_steps'],
normalize_returns=False,
enable_popart=False,
actor_lr=kwargs['actor_lr'],
critic_lr=kwargs['critic_lr'],
dynamic_sampling_ratio=kwargs['dynamic_sampling_ratio'],
dynamic_loss=kwargs['dynamic_loss'],
schedule_expert_actions=False,
log_addr=data_addr,
buffer_size=kwargs['memory_limit'],
norm_reward=kwargs['norm_reward'],
n_expert_trajs=kwargs['n_expert_trajs'],
prioritized_replay=kwargs['prioritized_replay'],
max_n=kwargs['max_n'])
# initial conditions for actor and critic
model.freeze_actor = False
model.freeze_critic = False
# ------------------------------------------------------------------
# TRAIN WITH CoL LOSS
# ------------------------------------------------------------------
model.learn(
total_timesteps=model.train_steps,
callback=save_model_callback,
dataset_addr=dataset_addr,
pretrain_steps=kwargs['pretraining_steps'],
pretrain_model_name=model_name + '/model_pretrained')
model.save(model_name+'/model')
# ------------------------------------------------------------------
# CLOSE EXPERIMENT
# ------------------------------------------------------------------
model.close_logs()
env.close()
print('[*] Training done ({}). Press CTRL+C to exit.'.format(data_addr))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=('Testing different loss function for the CoL.'))
parser.add_argument(
'--env', type=str, help='Environment name.', default='LunarLanderContinuous-v2')
parser.add_argument(
'--data_addr', type=str, help='Address to save data.', default='data/test')
parser.add_argument(
'--model_name', type=str, help='Address to save model.', default='data/test')
parser.add_argument(
'--dataset_addr', type=str, help='Address to expert dataset.', default='data/llc_sac_expert.npz')
parser.add_argument(
'--bc_model_name', type=str, help='Address of behavior cloning (BC) model.', default=None)
parser.add_argument(
'--lambda_ac_di_loss', type=float, help='Scale actor supervised loss', default=1.0)
parser.add_argument(
'--lambda_ac_qloss', type=float, help='Scale actor Q loss.', default=1.0)
parser.add_argument(
'--lambda_qloss', type=float, help='Scale critic Q loss.', default=1.0)
parser.add_argument(
'--lambda_n_step', type=float, help='Scale n-step loss.', default=1.0)
parser.add_argument(
'--critic_l2_reg', type=float, help='Critic L2 regularization.', default=0.00001)
parser.add_argument(
'--actor_l2_reg', type=float, help='Actor L2 regularization.', default=0.00001)
parser.add_argument(
'--critic_lr', type=float, help='Critic learning rate.', default=0.0001)
parser.add_argument(
'--actor_lr', type=float, help='Actor learning rate.', default=0.001)
parser.add_argument(
'--batch_size', type=int, help='RL batch size.', default=512)
parser.add_argument(
'--action_noise_sigma', type=float, help='Action noise sigma.', default=0.25)
parser.add_argument(
'--norm_reward', type=float, help='Normalize reward by a scalar.', default=1.)
parser.add_argument(
'--act_prob_expert_schedule', type=str, help='Scheme to schedule expert actions.', default='linear')
parser.add_argument(
'--train_steps', type=int, help='RL training steps.', default=2000000)
parser.add_argument(
'--schedule_steps', type=int, help='Action scheduling steps.', default=1)
parser.add_argument(
'--pretraining_steps', type=int, help='Pretraining steps.', default=100000)
parser.add_argument(
'--memory_limit', type=int, help='Max samples in memory.', default=500000)
parser.add_argument(
'--n_layers', type=int, help='Number of hidden layers.', default=3)
parser.add_argument(
'--n_neurons', type=int, help='Number of neurons per layer.', default=128)
parser.add_argument(
'--n_expert_trajs', type=int, help='Max number of expert trajectories.', default=-1)
parser.add_argument(
'--max_n', type=int, help='N value for n-step loss.', default=10)
parser.add_argument('--dynamic_sampling_ratio', dest='dynamic_sampling_ratio', action='store_true')
parser.set_defaults(dynamic_sampling_ratio=False)
parser.add_argument('--dynamic_loss', dest='dynamic_loss', action='store_true')
parser.set_defaults(dynamic_loss=False)
parser.add_argument('--prioritized_replay', dest='prioritized_replay', action='store_true')
parser.set_defaults(prioritized_replay=False)
parser.add_argument('--complete_episodes', dest='complete_episodes', action='store_true')
parser.set_defaults(complete_episodes=False)
args = parser.parse_args()
main(**vars(args))