This repository was archived by the owner on Apr 11, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpenn_RNN_compression.py
259 lines (213 loc) · 9.75 KB
/
penn_RNN_compression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
"""
based on https://github.com/locuslab/TCN/tree/master/TCN/char_cnn
"""
import argparse
import torch.nn as nn
import torch.optim as optim
import time
import math
from src.RNN_compression.cells import WaveletGRU, GRUCell
from src.util import compute_parameter_total
from src.penn_treebank.char_utils import *
import collections
import warnings
warnings.filterwarnings("ignore") # Suppress the RunTimeWarning on unicode
CustomWavelet = collections.namedtuple('Wavelet', ['dec_lo', 'dec_hi',
'rec_lo', 'rec_hi', 'name'])
parser = argparse.ArgumentParser(description='Sequence Modeling - Character Level Language Model')
parser.add_argument('--batch_size', type=int, default=32, metavar='N',
help='batch size (default: 32)')
parser.add_argument('--cuda', action='store_false',
help='use CUDA (default: True)')
parser.add_argument('--clip', type=float, default=0.15,
help='gradient clip, -1 means no clip (default: 0.15)')
parser.add_argument('--epochs', type=int, default=60,
help='upper epoch limit (default: 60)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='report interval (default: 100')
parser.add_argument('--lr', type=float, default=0.005,
help='initial learning rate (default: 0.1)')
parser.add_argument('--emsize', type=int, default=100,
help='dimension of character embeddings (default: 100)')
parser.add_argument('--optim', type=str, default='Adam',
help='optimizer to use (default: Adam)')
parser.add_argument('--validseqlen', type=int, default=320,
help='valid sequence length (default: 320)')
parser.add_argument('--seq_len', type=int, default=400,
help='total sequence length, including effective history (default: 400)')
parser.add_argument('--seed', type=int, default=1111,
help='random seed (default: 1111)')
parser.add_argument('--dataset', type=str, default='ptb',
help='dataset to use (default: ptb)')
parser.add_argument('--cell', type=str, default='WaveletGRU', help='The cell type to use,\
choose WaveletGRU or GRU.')
parser.add_argument('--cell_size', type=int, default=512, help='Cell state size. Default 512.')
parser.add_argument('--compression_mode', type=str, default='full',
help='Where to apply the compression layers.')
parser.add_argument('--wavelet_weight', type=float, default=1.,
help='Weight factor for the wavelet loss.')
parser.add_argument('--wave_dropout', type=float, default=0.0,
help='Wavelet dropout probability.')
args = parser.parse_args()
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
print(args)
file, file_len, valfile, valfile_len, testfile, testfile_len, corpus = data_generator(args)
n_characters = len(corpus.dict)
train_data = batchify(char_tensor(corpus, file), args.batch_size, args)
val_data = batchify(char_tensor(corpus, valfile), 1, args)
test_data = batchify(char_tensor(corpus, testfile), 1, args)
print("Corpus size: ", n_characters)
print(args.cell)
if args.cell == 'WaveletGRU':
init_wavelet = CustomWavelet(dec_lo=[0, 0, 0.7071067811865476, 0.7071067811865476, 0, 0],
dec_hi=[0, 0, -0.7071067811865476, 0.7071067811865476, 0, 0],
rec_lo=[0, 0, 0.7071067811865476, 0.7071067811865476, 0, 0],
rec_hi=[0, 0, 0.7071067811865476, -0.7071067811865476, 0, 0],
name='custom')
cell = WaveletGRU(input_size=args.emsize, out_size=n_characters, hidden_size=args.cell_size,
mode=args.compression_mode, init_wavelet=init_wavelet,
p_drop=args.wave_dropout)
elif args.cell == 'GRU':
cell = GRUCell(input_size=args.emsize, out_size=n_characters, hidden_size=args.cell_size)
else:
raise NotImplementedError()
class EmbeddingRnnWrapper(torch.nn.Module):
def __init__(self, cell, input_size, out_size):
super(EmbeddingRnnWrapper, self).__init__()
self.input_size = input_size
self.out_size = out_size
self.cell = cell
self.encoder = nn.Embedding(out_size, input_size)
def forward(self, x, h):
emb = self.encoder(x)
return self.cell(emb, h)
def get_wavelet_loss(self):
return self.cell.get_wavelet_loss()
model = EmbeddingRnnWrapper(cell, input_size=args.emsize, out_size=n_characters)
parameter_total = compute_parameter_total(model)
print('parameter total', parameter_total)
if args.cuda:
model.cuda()
criterion = nn.CrossEntropyLoss()
lr = args.lr
optimizer = getattr(optim, args.optim)(model.parameters(), lr=lr)
def run_rnn(cell, input):
y_cell_lst = []
h = None
for t in range(input.shape[-1]):
# batch_major format [b,t,d]
y, h = cell(input[:, t], h)
y_cell_lst.append(y)
y = torch.stack(y_cell_lst, 1)
return y
def evaluate(source):
model.eval()
total_loss = 0
count = 0
acc_sum = 0
source_len = source.size(1)
with torch.no_grad():
for batch, i in enumerate(range(0, source_len - 1, args.validseqlen)):
if i + args.seq_len - args.validseqlen >= source_len:
continue
inp, target = get_batch(source, i, args)
# output = model(inp)
output = run_rnn(model, inp)
eff_history = args.seq_len - args.validseqlen
final_output = output[:, eff_history:].contiguous().view(-1, n_characters)
final_target = target[:, eff_history:].contiguous().view(-1)
loss = criterion(final_output, final_target)
total_loss += loss.data * final_output.size(0)
count += final_output.size(0)
# compute accuracy.
acc_sum += torch.sum((torch.max(final_output, -1)[1] == final_target).type(torch.float32))
val_loss = total_loss.item() / count * 1.0
val_acc = acc_sum.item() / count * 1.0
return val_loss, val_acc
def train(epoch):
model.train()
total_loss = 0
total_wvl_loss = 0
start_time = time.time()
losses = []
wvl_losses = []
source = train_data
source_len = source.size(1)
for batch_idx, i in enumerate(range(0, source_len - 1, args.validseqlen)):
if i + args.seq_len - args.validseqlen >= source_len:
continue
inp, target = get_batch(source, i, args)
optimizer.zero_grad()
# output = model(inp)
output = run_rnn(model, inp)
eff_history = args.seq_len - args.validseqlen
final_output = output[:, eff_history:].contiguous().view(-1, n_characters)
final_target = target[:, eff_history:].contiguous().view(-1)
criterion_loss = criterion(final_output, final_target)
if args.cell == 'WaveletGRU':
loss_wave = model.get_wavelet_loss()
loss = criterion_loss + loss_wave * args.wavelet_weight
# print(loss_wave.item())
else:
loss_wave = torch.tensor(0.)
loss = criterion_loss
loss.backward()
if args.clip > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
total_loss += criterion_loss.item()
total_wvl_loss += loss_wave.item()
if batch_idx % args.log_interval == 0 and batch_idx > 0:
cur_loss = total_loss / args.log_interval
cur_wvl_loss = total_wvl_loss / args.log_interval
losses.append(cur_loss)
wvl_losses.append(cur_wvl_loss)
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.5f} | ms/batch {:5.2f} | '
'loss {:5.3f} | bpc {:5.3f}'.format(
epoch, batch_idx, int((source_len-0.5) / args.validseqlen), lr,
elapsed * 1000 / args.log_interval, cur_loss, cur_loss / math.log(2)))
total_loss = 0
start_time = time.time()
return sum(losses) * 1.0 / len(losses), sum(wvl_losses)/len(wvl_losses)
def main():
global lr
print("Training for %d epochs..." % args.epochs)
all_losses = []
best_vloss = 1e7
for epoch in range(1, args.epochs + 1):
loss, wvl_loss = train(epoch)
print('| epoch {:3d} | loss {:5.3f} | bpc {:8.3f} | wvl-loss {:8.6f}'.format(
epoch, loss, loss / math.log(2), wvl_loss))
vloss, vacc = evaluate(val_data)
print('-' * 89)
print('| End of epoch {:3d} | valid loss {:5.3f} | valid bpc {:8.3f}| valid acc {:8.3f}'.format(
epoch, vloss, vloss / math.log(2), vacc))
test_loss, test_acc = evaluate(test_data)
print('=' * 89)
print('| End of epoch {:3d} | test loss {:5.3f} | test bpc {:8.3f} | test acc {:8.3f}'.format(
epoch, test_loss, test_loss / math.log(2), test_acc))
print('=' * 89)
if epoch > 5 and vloss > max(all_losses[-3:]):
lr = lr / 2.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
all_losses.append(vloss)
# if vloss < best_vloss:
# print("Saving...")
# save(model)
# best_vloss = vloss
# Run on test data.
test_loss, test_acc = evaluate(test_data)
print('=' * 89)
print('| End of training | test loss {:5.3f} | test bpc {:8.3f}'.format(
test_loss, test_loss / math.log(2)))
print('=' * 89)
print('parameter total', parameter_total)
# train_by_random_chunk()
if __name__ == "__main__":
main()