Skip to content

Commit 956be8e

Browse files
authored
YOLOv5 release v6.0 (#5141)
* Update P5 models * Update P6 models * Update with GFLOPs and Params * Update with GFLOPs and Params * Update README * Update * Update README * Update * Update * Add times * Update README * Update results * Update results * Update results * Update hyps * Update plots * Update plots * Update README.md * Add nano models to hubconf.py
1 parent 938efe5 commit 956be8e

15 files changed

+229
-83
lines changed

README.md

+25-31
Original file line numberDiff line numberDiff line change
@@ -191,7 +191,7 @@ Get started in seconds with our verified environments. Click each icon below for
191191
</a>
192192
</div>
193193

194-
|Weights and Biases|Roboflow - ⭐ NEW|
194+
|Weights and Biases|Roboflow ⭐ NEW|
195195
|:-:|:-:|
196196
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and automatically export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
197197

@@ -207,53 +207,47 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi
207207

208208
## <div align="center">Why YOLOv5</div>
209209

210-
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p>
210+
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136901921-abcfcd9d-f978-4942-9b97-0e3f202907df.png"></p>
211211
<details>
212212
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
213213

214-
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
214+
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136763877-b174052b-c12f-48d2-8bc4-545e3853398e.png"></p>
215215
</details>
216216
<details>
217217
<summary>Figure Notes (click to expand)</summary>
218218

219-
* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size
220-
32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
221-
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
222-
* **Reproduce** by
223-
`python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
224-
219+
* **COCO AP val** denotes [email protected]:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
220+
* **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
221+
* **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
222+
* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
225223
</details>
226224

227225
### Pretrained Checkpoints
228226

229227
[assets]: https://github.com/ultralytics/yolov5/releases
230-
231-
|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPs<br><sup>640 (B)
232-
|--- |--- |--- |--- |--- |--- |---|--- |---
233-
|[YOLOv5s][assets] |640 |36.7 |36.7 |55.4 |**2.0** | |7.3 |17.0
234-
|[YOLOv5m][assets] |640 |44.5 |44.5 |63.1 |2.7 | |21.4 |51.3
235-
|[YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4
236-
|[YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8
237-
| | | | | | | | |
238-
|[YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4
239-
|[YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4
240-
|[YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7
241-
|[YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9
242-
| | | | | | | | |
243-
|[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
228+
[TTA]: https://github.com/ultralytics/yolov5/issues/303
229+
230+
|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
231+
|--- |--- |--- |--- |--- |--- |--- |--- |---
232+
|[YOLOv5n][assets] |640 |28.4 |46.0 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
233+
|[YOLOv5s][assets] |640 |37.2 |56.0 |98 |6.4 |0.9 |7.2 |16.5
234+
|[YOLOv5m][assets] |640 |45.2 |63.9 |224 |8.2 |1.7 |21.2 |49.0
235+
|[YOLOv5l][assets] |640 |48.8 |67.2 |430 |10.1 |2.7 |46.5 |109.1
236+
|[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7
237+
| | | | | | | | |
238+
|[YOLOv5n6][assets] |1280 |34.0 |50.7 |153 |8.1 |2.1 |3.2 |4.6
239+
|[YOLOv5s6][assets] |1280 |44.5 |63.0 |385 |8.2 |3.6 |16.8 |12.6
240+
|[YOLOv5m6][assets] |1280 |51.0 |69.0 |887 |11.1 |6.8 |35.7 |50.0
241+
|[YOLOv5l6][assets] |1280 |53.6 |71.6 |1784 |15.8 |10.5 |76.8 |111.4
242+
|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |54.7<br>**55.4** |**72.4**<br>72.3 |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>-
244243

245244
<details>
246245
<summary>Table Notes (click to expand)</summary>
247246

248247
* All checkpoints are trained to 300 epochs with default settings and hyperparameters.
249-
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results
250-
denote val2017 accuracy.
251-
* **mAP** values are for single-model single-scale unless otherwise noted.<br>**Reproduce** by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
252-
* **Speed** averaged over 5000 COCO val2017 images using a
253-
GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and
254-
includes FP16 inference, postprocessing and NMS.<br>**Reproduce**
255-
by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half`
256-
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale.<br>**Reproduce** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
248+
* **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
249+
* **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
250+
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
257251

258252
</details>
259253

data/hyps/hyp.scratch-p6.yaml data/hyps/hyp.scratch-high.yaml

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2-
# Hyperparameters for COCO training from scratch
2+
# Hyperparameters for high-augmentation COCO training from scratch
33
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
44
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
55

@@ -30,5 +30,5 @@ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
3030
flipud: 0.0 # image flip up-down (probability)
3131
fliplr: 0.5 # image flip left-right (probability)
3232
mosaic: 1.0 # image mosaic (probability)
33-
mixup: 0.0 # image mixup (probability)
34-
copy_paste: 0.0 # segment copy-paste (probability)
33+
mixup: 0.1 # image mixup (probability)
34+
copy_paste: 0.1 # segment copy-paste (probability)

data/hyps/hyp.scratch-low.yaml

+34
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,34 @@
1+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2+
# Hyperparameters for low-augmentation COCO training from scratch
3+
# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
4+
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5+
6+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7+
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
8+
momentum: 0.937 # SGD momentum/Adam beta1
9+
weight_decay: 0.0005 # optimizer weight decay 5e-4
10+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
11+
warmup_momentum: 0.8 # warmup initial momentum
12+
warmup_bias_lr: 0.1 # warmup initial bias lr
13+
box: 0.05 # box loss gain
14+
cls: 0.5 # cls loss gain
15+
cls_pw: 1.0 # cls BCELoss positive_weight
16+
obj: 1.0 # obj loss gain (scale with pixels)
17+
obj_pw: 1.0 # obj BCELoss positive_weight
18+
iou_t: 0.20 # IoU training threshold
19+
anchor_t: 4.0 # anchor-multiple threshold
20+
# anchors: 3 # anchors per output layer (0 to ignore)
21+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25+
degrees: 0.0 # image rotation (+/- deg)
26+
translate: 0.1 # image translation (+/- fraction)
27+
scale: 0.5 # image scale (+/- gain)
28+
shear: 0.0 # image shear (+/- deg)
29+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30+
flipud: 0.0 # image flip up-down (probability)
31+
fliplr: 0.5 # image flip left-right (probability)
32+
mosaic: 1.0 # image mosaic (probability)
33+
mixup: 0.0 # image mixup (probability)
34+
copy_paste: 0.0 # segment copy-paste (probability)

data/hyps/hyp.scratch.yaml

+1-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
55

66
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7-
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
7+
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
88
momentum: 0.937 # SGD momentum/Adam beta1
99
weight_decay: 0.0005 # optimizer weight decay 5e-4
1010
warmup_epochs: 3.0 # warmup epochs (fractions ok)

hubconf.py

+10
Original file line numberDiff line numberDiff line change
@@ -70,6 +70,11 @@ def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
7070
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
7171

7272

73+
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
74+
# YOLOv5-nano model https://github.com/ultralytics/yolov5
75+
return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
76+
77+
7378
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
7479
# YOLOv5-small model https://github.com/ultralytics/yolov5
7580
return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
@@ -90,6 +95,11 @@ def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=Tru
9095
return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
9196

9297

98+
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
99+
# YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
100+
return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
101+
102+
93103
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
94104
# YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
95105
return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)

models/hub/yolov5l6.yaml

+6-6
Original file line numberDiff line numberDiff line change
@@ -10,24 +10,24 @@ anchors:
1010
- [140,301, 303,264, 238,542] # P5/32
1111
- [436,615, 739,380, 925,792] # P6/64
1212

13-
# YOLOv5 backbone
13+
# YOLOv5 v6.0 backbone
1414
backbone:
1515
# [from, number, module, args]
16-
[[-1, 1, Focus, [64, 3]], # 0-P1/2
16+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
1717
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
1818
[-1, 3, C3, [128]],
1919
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20-
[-1, 9, C3, [256]],
20+
[-1, 6, C3, [256]],
2121
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
2222
[-1, 9, C3, [512]],
2323
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
2424
[-1, 3, C3, [768]],
2525
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26-
[-1, 1, SPP, [1024, [3, 5, 7]]],
27-
[-1, 3, C3, [1024, False]], # 11
26+
[-1, 3, C3, [1024]],
27+
[-1, 1, SPPF, [1024, 5]], # 11
2828
]
2929

30-
# YOLOv5 head
30+
# YOLOv5 v6.0 head
3131
head:
3232
[[-1, 1, Conv, [768, 1, 1]],
3333
[-1, 1, nn.Upsample, [None, 2, 'nearest']],

models/hub/yolov5m6.yaml

+6-6
Original file line numberDiff line numberDiff line change
@@ -10,24 +10,24 @@ anchors:
1010
- [140,301, 303,264, 238,542] # P5/32
1111
- [436,615, 739,380, 925,792] # P6/64
1212

13-
# YOLOv5 backbone
13+
# YOLOv5 v6.0 backbone
1414
backbone:
1515
# [from, number, module, args]
16-
[[-1, 1, Focus, [64, 3]], # 0-P1/2
16+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
1717
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
1818
[-1, 3, C3, [128]],
1919
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20-
[-1, 9, C3, [256]],
20+
[-1, 6, C3, [256]],
2121
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
2222
[-1, 9, C3, [512]],
2323
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
2424
[-1, 3, C3, [768]],
2525
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26-
[-1, 1, SPP, [1024, [3, 5, 7]]],
27-
[-1, 3, C3, [1024, False]], # 11
26+
[-1, 3, C3, [1024]],
27+
[-1, 1, SPPF, [1024, 5]], # 11
2828
]
2929

30-
# YOLOv5 head
30+
# YOLOv5 v6.0 head
3131
head:
3232
[[-1, 1, Conv, [768, 1, 1]],
3333
[-1, 1, nn.Upsample, [None, 2, 'nearest']],

models/hub/yolov5n6.yaml

+60
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,60 @@
1+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2+
3+
# Parameters
4+
nc: 80 # number of classes
5+
depth_multiple: 0.33 # model depth multiple
6+
width_multiple: 0.25 # layer channel multiple
7+
anchors:
8+
- [19,27, 44,40, 38,94] # P3/8
9+
- [96,68, 86,152, 180,137] # P4/16
10+
- [140,301, 303,264, 238,542] # P5/32
11+
- [436,615, 739,380, 925,792] # P6/64
12+
13+
# YOLOv5 v6.0 backbone
14+
backbone:
15+
# [from, number, module, args]
16+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17+
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18+
[-1, 3, C3, [128]],
19+
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20+
[-1, 6, C3, [256]],
21+
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22+
[-1, 9, C3, [512]],
23+
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24+
[-1, 3, C3, [768]],
25+
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26+
[-1, 3, C3, [1024]],
27+
[-1, 1, SPPF, [1024, 5]], # 11
28+
]
29+
30+
# YOLOv5 v6.0 head
31+
head:
32+
[[-1, 1, Conv, [768, 1, 1]],
33+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
34+
[[-1, 8], 1, Concat, [1]], # cat backbone P5
35+
[-1, 3, C3, [768, False]], # 15
36+
37+
[-1, 1, Conv, [512, 1, 1]],
38+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
39+
[[-1, 6], 1, Concat, [1]], # cat backbone P4
40+
[-1, 3, C3, [512, False]], # 19
41+
42+
[-1, 1, Conv, [256, 1, 1]],
43+
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
44+
[[-1, 4], 1, Concat, [1]], # cat backbone P3
45+
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
46+
47+
[-1, 1, Conv, [256, 3, 2]],
48+
[[-1, 20], 1, Concat, [1]], # cat head P4
49+
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50+
51+
[-1, 1, Conv, [512, 3, 2]],
52+
[[-1, 16], 1, Concat, [1]], # cat head P5
53+
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
54+
55+
[-1, 1, Conv, [768, 3, 2]],
56+
[[-1, 12], 1, Concat, [1]], # cat head P6
57+
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58+
59+
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60+
]

models/hub/yolov5s6.yaml

+6-6
Original file line numberDiff line numberDiff line change
@@ -10,24 +10,24 @@ anchors:
1010
- [140,301, 303,264, 238,542] # P5/32
1111
- [436,615, 739,380, 925,792] # P6/64
1212

13-
# YOLOv5 backbone
13+
# YOLOv5 v6.0 backbone
1414
backbone:
1515
# [from, number, module, args]
16-
[[-1, 1, Focus, [64, 3]], # 0-P1/2
16+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
1717
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
1818
[-1, 3, C3, [128]],
1919
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20-
[-1, 9, C3, [256]],
20+
[-1, 6, C3, [256]],
2121
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
2222
[-1, 9, C3, [512]],
2323
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
2424
[-1, 3, C3, [768]],
2525
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26-
[-1, 1, SPP, [1024, [3, 5, 7]]],
27-
[-1, 3, C3, [1024, False]], # 11
26+
[-1, 3, C3, [1024]],
27+
[-1, 1, SPPF, [1024, 5]], # 11
2828
]
2929

30-
# YOLOv5 head
30+
# YOLOv5 v6.0 head
3131
head:
3232
[[-1, 1, Conv, [768, 1, 1]],
3333
[-1, 1, nn.Upsample, [None, 2, 'nearest']],

models/hub/yolov5x6.yaml

+6-6
Original file line numberDiff line numberDiff line change
@@ -10,24 +10,24 @@ anchors:
1010
- [140,301, 303,264, 238,542] # P5/32
1111
- [436,615, 739,380, 925,792] # P6/64
1212

13-
# YOLOv5 backbone
13+
# YOLOv5 v6.0 backbone
1414
backbone:
1515
# [from, number, module, args]
16-
[[-1, 1, Focus, [64, 3]], # 0-P1/2
16+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
1717
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
1818
[-1, 3, C3, [128]],
1919
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20-
[-1, 9, C3, [256]],
20+
[-1, 6, C3, [256]],
2121
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
2222
[-1, 9, C3, [512]],
2323
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
2424
[-1, 3, C3, [768]],
2525
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26-
[-1, 1, SPP, [1024, [3, 5, 7]]],
27-
[-1, 3, C3, [1024, False]], # 11
26+
[-1, 3, C3, [1024]],
27+
[-1, 1, SPPF, [1024, 5]], # 11
2828
]
2929

30-
# YOLOv5 head
30+
# YOLOv5 v6.0 head
3131
head:
3232
[[-1, 1, Conv, [768, 1, 1]],
3333
[-1, 1, nn.Upsample, [None, 2, 'nearest']],

models/yolov5l.yaml

+6-6
Original file line numberDiff line numberDiff line change
@@ -9,22 +9,22 @@ anchors:
99
- [30,61, 62,45, 59,119] # P4/16
1010
- [116,90, 156,198, 373,326] # P5/32
1111

12-
# YOLOv5 backbone
12+
# YOLOv5 v6.0 backbone
1313
backbone:
1414
# [from, number, module, args]
15-
[[-1, 1, Focus, [64, 3]], # 0-P1/2
15+
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
1616
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
1717
[-1, 3, C3, [128]],
1818
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19-
[-1, 9, C3, [256]],
19+
[-1, 6, C3, [256]],
2020
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
2121
[-1, 9, C3, [512]],
2222
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23-
[-1, 1, SPP, [1024, [5, 9, 13]]],
24-
[-1, 3, C3, [1024, False]], # 9
23+
[-1, 3, C3, [1024]],
24+
[-1, 1, SPPF, [1024, 5]], # 9
2525
]
2626

27-
# YOLOv5 head
27+
# YOLOv5 v6.0 head
2828
head:
2929
[[-1, 1, Conv, [512, 1, 1]],
3030
[-1, 1, nn.Upsample, [None, 2, 'nearest']],

0 commit comments

Comments
 (0)