-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcompute_flops.py
195 lines (167 loc) · 8.32 KB
/
compute_flops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# this is the main entrypoint
# as we describe in the paper, we compute the flops over the first 100 images
# on COCO val2017, and report the average result
import torch
import time
import torchvision
import argparse
import numpy as np
import tqdm
from models import build_model
from datasets import build_dataset
from flop_count import flop_count
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=100, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# dataset parameters
parser.add_argument('--train_image_set', default='train')## add for train on sampled set, train_sampled_PER_CAT_THR_500, ...
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--sample_reg_loss', default=1e-4, type=float,
help="sample_reg_loss")
parser.add_argument('--sample_topk_ratio', default=1/3., type=float)
parser.add_argument('--score_pred_net', type=str, default='2layer-fc-256')
parser.add_argument('--unsample_abstract_number', default=100, type=int,
help='unsample_abstract_number')
parser.add_argument('--pos_embed_kproj', action='store_true',
help="add pos embeding for predicting unsampled aggregation attention")
parser.add_argument('--sampler_lr_drop_epoch', default=1e5, type=int,
help='default is not drop')
parser.add_argument('--reshape_param_group', action='store_true',
help="reshape_param_group of loaded state_dict to match with the 3 group setting")
parser.add_argument('--notload_lr_scheduler', action='store_true',
help="notload_lr_scheduler")
return parser
def get_dataset(coco_path):
"""
Gets the COCO dataset used for computing the flops on
"""
class DummyArgs:
pass
args = DummyArgs()
args.dataset_file = "coco"
args.coco_path = coco_path
args.masks = False
dataset = build_dataset(image_set='val', args=args)
return dataset
def warmup(model, inputs, N=10):
for i in range(N):
out = model(inputs)
torch.cuda.synchronize()
def measure_time(model, inputs, N=10):
warmup(model, inputs)
s = time.time()
for i in range(N):
out = model(inputs)
torch.cuda.synchronize()
t = (time.time() - s) / N
return t
def fmt_res(data):
return data.mean(), data.std(), data.min(), data.max()
# get the first 100 images of COCO val2017
PATH_TO_COCO = "./data/coco/"
dataset = get_dataset(PATH_TO_COCO)
images = []
for idx in range(100):
img, t = dataset[idx]
images.append(img)
device = torch.device('cuda')
results = {}
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
model, criterion, postprocessors = build_model(args)
model.to(device)
model_name = 'detr_resnet50'
with torch.no_grad():
tmp = []
tmp2 = []
measure_scopes = ['encoder','decoder','backbone','SortSampler']
measure_scopes_res = {k:[] for k in measure_scopes}
for img in tqdm.tqdm(images):
inputs = [img.to(device)]
res = flop_count(model, (inputs,))
[measure_scopes_res[k].append(sum(flop_count(model, (inputs,), measure_scope=k).values())) for k in measure_scopes]
# t = measure_time(model, inputs)
tmp.append(sum(res.values()))
# tmp2.append(t)
results[model_name] = {'flops': fmt_res(np.array(tmp)),
'flops_backbone': np.mean(measure_scopes_res['backbone']),
'flops_encoder': np.mean(measure_scopes_res['encoder']),
'flops_decoder': np.mean(measure_scopes_res['decoder']),
'flops_sampler': np.mean(measure_scopes_res['SortSampler']),
}
print('=============================')
print('')
for r in results:
print(r)
for k, v in results[r].items():
print(' ', k, ':', v)