-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
212 lines (182 loc) · 6.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import cv2
import numpy as np
import os
import pickle
from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from src.utils import get_files, get_label_from_path
from src.utils import read_image, load_model
from src.feature_extraction import get_descriptors
from src.feature_extraction import create_bov, extract_feature
from src.utils import write_metrics, plot_confusion_matrix
def train(
model_clf,
descriptor_list,
labels,
extractor,
n_visuals,
label2idx,
bov_path,
model_clf_path,
scale_path,
**kwargs):
#img_paths = get_files(img_dir)
#image_count = 0
# get list descriptors from cho_meo image
descriptor_list = descriptor_list
train_labels = labels
image_count = len(train_labels)
'''
descriptor_list = []
train_labels = []
total_descriptors = 0
print('Get descriptors...')
for img_path in img_paths:
class_idx = get_label_from_path(img_path, label2idx)
img = read_image(img_path)
des = get_descriptors(extractor, img)
if des is not None:
image_count += 1
train_labels.append(class_idx)
descriptor_list.append(des)
total_descriptors += len(des)
train_labels = np.array(train_labels)
'''
# stack all descriptors to np.array
descriptors = np.array(descriptor_list[0])
for descriptor in descriptor_list[1:]:
descriptors = np.vstack((descriptors, descriptor))
print('Create or get bags of visual...')
# load bov or create bov
if os.path.exists(bov_path):
bov = load_model(bov_path)
else:
bov = create_bov(descriptors, n_visuals, bov_path)
print('Create features...')
# create feature form bov
im_features = extract_feature(bov, descriptor_list, n_visuals)
# normalize feature
scale = StandardScaler()
print('Normalize...')
scale.fit(im_features)
im_features = scale.transform(im_features)
# plot histogram
# plot_histogram(im_features, n_visuals)
print('Training...')
model_clf.fit(im_features, train_labels)
print('Done')
pickle.dump(model_clf, open(model_clf_path, 'wb'))
pickle.dump(scale, open(scale_path, 'wb'))
return model_clf, scale
def evaluate(model_clf_path,
scale_path,
descriptor_list,
labels,
extractor,
bov_path,
n_visuals,
label2idx,
result_path):
#img_paths = get_files(img_dir)
#image_count = 0
# get list descriptors from cho_meo image
#descriptor_list = []
#test_labels = []
print(f'Load bov model from {bov_path}.')
bov = load_model(bov_path)
print(f'Load classification model from {model_clf_path}.')
model_ = load_model(model_clf_path)
scale_ = load_model(scale_path)
print(f'Load scale from {scale_path}.')
print('Get descriptors')
descriptor_list = descriptor_list
test_labels = labels
image_count = len(test_labels)
'''
for img_path in img_paths:
class_idx = get_label_from_path(img_path, label2idx)
img = read_image(img_path)
des = get_descriptors(extractor, img)
if des is not None:
image_count += 1
test_labels.append(class_idx)
descriptor_list.append(des)
test_labels = np.array(test_labels)
'''
print('Extract feature')
test_features = extract_feature(bov, descriptor_list, n_visuals)
test_features = scale_.transform(test_features)
print('Predict:')
predictions = model_.predict(test_features)
labels = list(label2idx.keys())
write_metrics(test_labels, predictions, average='macro', result_path=result_path, show=True, label2idx=label2idx)
idx2label = {idx: label for label, idx in label2idx.items()}
true_label = [idx2label[y] for y in test_labels]
pred_label = [idx2label[y] for y in predictions]
plot_confusion_matrix(true_label, pred_label, labels, normalize=True, save_dir=result_path)
plot_confusion_matrix(true_label, pred_label, labels, normalize=False, save_dir=result_path)
if __name__ == '__main__':
train_dir = 'data/cho_meo'
test_dir = 'data/test'
result_path = 'results'
data = 'data/natural_images'
if os.path.exists('models') is False:
os.makedirs('models')
if os.path.exists(result_path) is False:
os.makedirs(result_path)
extractor = cv2.SIFT_create()
#extractor = cv2.xfeatures2d.SURF_create(500)
model_clf = LinearSVC()
label2idx = {
'airplane': 0,
'car': 1,
'cat': 2,
'dog': 3,
'flower': 4,
'fruit': 5,
'motorbike': 6,
'person':7
}
img_paths = get_files(data)
# get list descriptors from cho_meo image
descriptor_list = []
labels = []
print('Get descriptors...')
for img_path in img_paths:
class_idx = get_label_from_path(img_path, label2idx)
img = read_image(img_path)
des = get_descriptors(extractor, img)
if des is not None:
labels.append(class_idx)
descriptor_list.append(des)
labels = np.array(labels)
train_descriptor_list, test_descriptor_list, train_labels, test_labels = train_test_split(descriptor_list, labels, test_size=0.33, random_state=41)
n_visuals = 500
bov_path = f'models/bov_{n_visuals}.sav'
model_clf_path = f'models/model_clf_{n_visuals}.sav'
scale_path = f'models/scale_{n_visuals}.sav'
print('-'*40 + 'Training' + '-'*40)
model_clf, scale = train(
model_clf=model_clf,
descriptor_list=train_descriptor_list,
labels=train_labels,
bov_path=bov_path,
extractor=extractor,
label2idx=label2idx,
n_visuals=n_visuals,
model_clf_path=model_clf_path,
scale_path=scale_path
)
print('-' * 40 + 'Testing' + '-' * 40)
evaluate(
model_clf_path=model_clf_path,
scale_path=scale_path,
descriptor_list=test_descriptor_list,
labels=test_labels,
label2idx=label2idx,
n_visuals=n_visuals,
extractor=extractor,
bov_path=bov_path,
result_path=result_path
)