-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreset.py
154 lines (118 loc) · 4.68 KB
/
reset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# import argparse
import json
import os
from ast import literal_eval
from sklearn.svm import LinearSVC
from sklearn.calibration import CalibratedClassifierCV
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.externals.joblib import dump, load
import pymongo
from pymongo import MongoClient
from server import settings
PATH_PREFIX = "models/"
USER = "user"
#settings
client = MongoClient(settings.MONGODB_HOST, settings.MONGODB_PORT)
db = client[settings.DATABASE_NAME]
levels = ["encounters", "reports", "sections", "sentences"]
with open('initial_ids.json') as json_file:
initial_ids = json.load(json_file)
def remove_feedback():
for level in levels:
for row in db[level].find({"class":{"$ne":None}}):
db[level].update_one({ '_id': row['_id']},
{
"$unset":{
"class": True,
"rationale_list": True,
"model": True
}
})
db["feedbacks"].remove({})
def add_feedback():
#Populate feedbacks
for enc in initial_ids:
for level in levels:
for row in db[level].find({"encounter_id": enc}):
if (row["gold_label"] == "neg"):
class_ = 0
else:
class_ = 1
#Update levels
db[level].update_one({ '_id': row['_id']},
{"$set":{
"class": class_,
"model": 0,
},
"$push":{
'rationale_list': {"$each": literal_eval(row['rationales'])}
}
}
)
feedback = {
'level': level,
'id': row[level[:-1]+"_id"],
'class': class_,
'model': 0,
'user': USER
}
#save in feedbacks for logging
db["feedbacks"].find_one_and_update( {
"level": feedback["level"],
"id": feedback["id"],
"model": feedback["model"]
},
{"$set": feedback},
upsert=True)
def create_models():
#Delete exisiting
for file in os.listdir(PATH_PREFIX):
file_path = os.path.join(PATH_PREFIX, file)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
print(e)
#Create model 0
for level in levels:
texts_ = []
classes_ = []
for row in db[level].find({"class":{"$ne":None}}):
texts_.append(row['text'])
classes_.append(row['class'])
#add rationales for sentences
if (level == "sentences"):
for rationale in row['rationale_list']:
texts_.append(rationale)
classes_.append(1)
count_vect = CountVectorizer()
tfidf_transformer = TfidfTransformer()
classifier = LinearSVC(penalty="l2", dual=False, tol=1e-3)
# classifier = CalibratedClassifierCV(classifier)
X_train_counts = count_vect.fit_transform(texts_)
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
classifier.fit(X_train_tfidf, classes_)
model = 0
path = PATH_PREFIX + level + "_" + str(model) + ".classifier"
if os.path.exists(path):
print path + " already exists!"
os.remove(path)
dump(classifier, path)
path = PATH_PREFIX + level + "_" + str(model) + ".count_vect"
if os.path.exists(path):
print path + " already exists!"
os.remove(path)
dump(count_vect, path)
path = PATH_PREFIX + level + "_" + str(model) + ".tfidf_transformer"
if os.path.exists(path):
print path + " already exists!"
os.remove(path)
dump(tfidf_transformer, path)
if __name__ == '__main__':
print "(1/3) Removing feedback"
remove_feedback()
print "(2/3) Adding feedback"
add_feedback()
print "(3/3) Training model 0"
create_models()
print "Done! Restart server now."