-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathetl.py
171 lines (129 loc) · 5.39 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
from io import StringIO
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def check_data_quality(df):
"""
- Ensures the checked df has 1 row
- Returns True if df has 1 row, else False
"""
if df.shape[0] == 1:
return True
def optimize_insert(cur, df, table_name, table_insert):
"""
- Tries to use the efficient copy_from method
- If there's a unique primary key violation then uses SQL query to handle conflicts
"""
try:
buffer = StringIO()
df.to_csv(buffer, header=False, index=False)
buffer.seek(0)
cur.copy_from(buffer, table_name, sep=',')
except psycopg2.errors.UniqueViolation as e:
cur.execute("ROLLBACK")
for index, row in df.iterrows():
cur.execute(table_insert, row.values)
def process_song_file(cur, filepath):
"""
- Here we are going load the song file into a dataframe
- Then we insert it to the relevant table if it contains just 1 entry
"""
# open song file
df = pd.read_json(filepath, typ='series')
df = df.to_frame().transpose()
if check_data_quality(df):
# insert song record
song_data = df.iloc[0][['song_id', 'title', 'artist_id', 'year', 'duration']].values
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = df.iloc[0][['artist_id', 'artist_name', 'artist_location', 'artist_latitude', 'artist_longitude']].values
cur.execute(artist_table_insert, artist_data)
else:
for index, row in df.iterrows():
# insert song record
song_data = df.iloc[index][['song_id', 'title', 'artist_id', 'year', 'duration']].values
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = df.iloc[index][['artist_id', 'artist_name', 'artist_location', 'artist_latitude', 'artist_longitude']].values
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""
- Here we are going save the dataframe in memory
and use copy_from() to copy it to the table.
"""
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df.page == 'NextSong']
# convert timestamp column to datetime
df['ts'] = pd.to_datetime(df.ts, unit='ms')
# transform time data records
df_time = df.ts.dt
time_data = zip(df.ts.values, df_time.hour, df_time.day, df_time.isocalendar().week, df_time.month, df_time.year, df_time.dayofweek)
column_labels = ('timestamp', 'hour', 'day', 'week_of_year', 'month', 'year', 'weekday')
time_df = pd.DataFrame(time_data, columns=column_labels)
# if there's a non-unique primary key then using the SQL insert method to handle conflicts
# if all keys are unique then using copy_from for speed
optimize_insert(cur, time_df, 'time', time_table_insert)
# load user table
user_df = df[['userId', 'firstName', 'lastName', 'gender', 'level']]
optimize_insert(cur, user_df, 'users', user_table_insert)
songplay_data = []
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data.append([row.ts, row.userId, row.level, songid, artistid, row.sessionId, row.location, row.userAgent.replace("\"", "")])
# need to get songplay data to DF
songplay_df = pd.DataFrame(songplay_data)
# use a tab separator instead of comma because of commas within location and userAgent fields
buffer = StringIO()
songplay_df.to_csv(buffer, sep='\t', header=False, index=False)
buffer.seek(0)
cur.copy_from(buffer, 'songplays', sep='\t', columns=('start_time', 'user_id', 'level', 'song_id', 'artist_id', 'session_id', 'location', 'user_agent'))
def process_data(cur, conn, filepath, func):
"""
- Crawl directory adding all filepaths to a list for further processing
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root, '*.json'))
for f in files:
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files, processing and inserting their data to the database
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print(f'{i}/{num_files} files processed.')
def main():
"""
- Connect to database
- Call data processing functions
"""
try:
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=transom")
except psycopg2.Error as e:
print("Error: Could not connect to the Database")
print(e)
try:
cur = conn.cursor()
except psycopg2.Error as e:
print("Error: Could not create a cursor")
print(e)
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()