-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathkitti_common.py
411 lines (367 loc) · 14.9 KB
/
kitti_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import concurrent.futures as futures
import os
import pathlib
import re
from collections import OrderedDict
import numpy as np
from skimage import io
def get_image_index_str(img_idx):
return "{:06d}".format(img_idx)
def get_kitti_info_path(idx,
prefix,
info_type='image_2',
file_tail='.png',
training=True,
relative_path=True):
img_idx_str = get_image_index_str(idx)
img_idx_str += file_tail
prefix = pathlib.Path(prefix)
if training:
file_path = pathlib.Path('training') / info_type / img_idx_str
else:
file_path = pathlib.Path('testing') / info_type / img_idx_str
if not (prefix / file_path).exists():
raise ValueError("file not exist: {}".format(file_path))
if relative_path:
return str(file_path)
else:
return str(prefix / file_path)
def get_image_path(idx, prefix, training=True, relative_path=True):
return get_kitti_info_path(idx, prefix, 'image_2', '.png', training,
relative_path)
def get_label_path(idx, prefix, training=True, relative_path=True):
return get_kitti_info_path(idx, prefix, 'label_2', '.txt', training,
relative_path)
def get_velodyne_path(idx, prefix, training=True, relative_path=True):
return get_kitti_info_path(idx, prefix, 'velodyne', '.bin', training,
relative_path)
def get_calib_path(idx, prefix, training=True, relative_path=True):
return get_kitti_info_path(idx, prefix, 'calib', '.txt', training,
relative_path)
def _extend_matrix(mat):
mat = np.concatenate([mat, np.array([[0., 0., 0., 1.]])], axis=0)
return mat
def get_kitti_image_info(path,
training=True,
label_info=True,
velodyne=False,
calib=False,
image_ids=7481,
extend_matrix=True,
num_worker=8,
relative_path=True,
with_imageshape=True):
# image_infos = []
root_path = pathlib.Path(path)
if not isinstance(image_ids, list):
image_ids = list(range(image_ids))
def map_func(idx):
image_info = {'image_idx': idx}
annotations = None
if velodyne:
image_info['velodyne_path'] = get_velodyne_path(
idx, path, training, relative_path)
image_info['img_path'] = get_image_path(idx, path, training,
relative_path)
if with_imageshape:
img_path = image_info['img_path']
if relative_path:
img_path = str(root_path / img_path)
image_info['img_shape'] = np.array(
io.imread(img_path).shape[:2], dtype=np.int32)
if label_info:
label_path = get_label_path(idx, path, training, relative_path)
if relative_path:
label_path = str(root_path / label_path)
annotations = get_label_anno(label_path)
if calib:
calib_path = get_calib_path(
idx, path, training, relative_path=False)
with open(calib_path, 'r') as f:
lines = f.readlines()
P0 = np.array(
[float(info) for info in lines[0].split(' ')[1:13]]).reshape(
[3, 4])
P1 = np.array(
[float(info) for info in lines[1].split(' ')[1:13]]).reshape(
[3, 4])
P2 = np.array(
[float(info) for info in lines[2].split(' ')[1:13]]).reshape(
[3, 4])
P3 = np.array(
[float(info) for info in lines[3].split(' ')[1:13]]).reshape(
[3, 4])
if extend_matrix:
P0 = _extend_matrix(P0)
P1 = _extend_matrix(P1)
P2 = _extend_matrix(P2)
P3 = _extend_matrix(P3)
image_info['calib/P0'] = P0
image_info['calib/P1'] = P1
image_info['calib/P2'] = P2
image_info['calib/P3'] = P3
R0_rect = np.array([
float(info) for info in lines[4].split(' ')[1:10]
]).reshape([3, 3])
if extend_matrix:
rect_4x4 = np.zeros([4, 4], dtype=R0_rect.dtype)
rect_4x4[3, 3] = 1.
rect_4x4[:3, :3] = R0_rect
else:
rect_4x4 = R0_rect
image_info['calib/R0_rect'] = rect_4x4
Tr_velo_to_cam = np.array([
float(info) for info in lines[5].split(' ')[1:13]
]).reshape([3, 4])
Tr_imu_to_velo = np.array([
float(info) for info in lines[6].split(' ')[1:13]
]).reshape([3, 4])
if extend_matrix:
Tr_velo_to_cam = _extend_matrix(Tr_velo_to_cam)
Tr_imu_to_velo = _extend_matrix(Tr_imu_to_velo)
image_info['calib/Tr_velo_to_cam'] = Tr_velo_to_cam
image_info['calib/Tr_imu_to_velo'] = Tr_imu_to_velo
if annotations is not None:
image_info['annos'] = annotations
add_difficulty_to_annos(image_info)
return image_info
with futures.ThreadPoolExecutor(num_worker) as executor:
image_infos = executor.map(map_func, image_ids)
return list(image_infos)
def filter_kitti_anno(image_anno,
used_classes,
used_difficulty=None,
dontcare_iou=None):
if not isinstance(used_classes, (list, tuple)):
used_classes = [used_classes]
img_filtered_annotations = {}
relevant_annotation_indices = [
i for i, x in enumerate(image_anno['name']) if x in used_classes
]
for key in image_anno.keys():
img_filtered_annotations[key] = (
image_anno[key][relevant_annotation_indices])
if used_difficulty is not None:
relevant_annotation_indices = [
i for i, x in enumerate(img_filtered_annotations['difficulty'])
if x in used_difficulty
]
for key in image_anno.keys():
img_filtered_annotations[key] = (
img_filtered_annotations[key][relevant_annotation_indices])
if 'DontCare' in used_classes and dontcare_iou is not None:
dont_care_indices = [
i for i, x in enumerate(img_filtered_annotations['name'])
if x == 'DontCare'
]
# bounding box format [y_min, x_min, y_max, x_max]
all_boxes = img_filtered_annotations['bbox']
ious = iou(all_boxes, all_boxes[dont_care_indices])
# Remove all bounding boxes that overlap with a dontcare region.
if ious.size > 0:
boxes_to_remove = np.amax(ious, axis=1) > dontcare_iou
for key in image_anno.keys():
img_filtered_annotations[key] = (img_filtered_annotations[key][
np.logical_not(boxes_to_remove)])
return img_filtered_annotations
def filter_annos_low_score(image_annos, thresh):
new_image_annos = []
for anno in image_annos:
img_filtered_annotations = {}
relevant_annotation_indices = [
i for i, s in enumerate(anno['score']) if s >= thresh
]
for key in anno.keys():
img_filtered_annotations[key] = (
anno[key][relevant_annotation_indices])
new_image_annos.append(img_filtered_annotations)
return new_image_annos
def kitti_result_line(result_dict, precision=4):
prec_float = "{" + ":.{}f".format(precision) + "}"
res_line = []
all_field_default = OrderedDict([
('name', None),
('truncated', -1),
('occluded', -1),
('alpha', -10),
('bbox', None),
('dimensions', [-1, -1, -1]),
('location', [-1000, -1000, -1000]),
('rotation_y', -10),
('score', None),
])
res_dict = [(key, None) for key, val in all_field_default.items()]
res_dict = OrderedDict(res_dict)
for key, val in result_dict.items():
if all_field_default[key] is None and val is None:
raise ValueError("you must specify a value for {}".format(key))
res_dict[key] = val
for key, val in res_dict.items():
if key == 'name':
res_line.append(val)
elif key in ['truncated', 'alpha', 'rotation_y', 'score']:
if val is None:
res_line.append(str(all_field_default[key]))
else:
res_line.append(prec_float.format(val))
elif key == 'occluded':
if val is None:
res_line.append(str(all_field_default[key]))
else:
res_line.append('{}'.format(val))
elif key in ['bbox', 'dimensions', 'location']:
if val is None:
res_line += [str(v) for v in all_field_default[key]]
else:
res_line += [prec_float.format(v) for v in val]
else:
raise ValueError("unknown key. supported key:{}".format(
res_dict.keys()))
return ' '.join(res_line)
def add_difficulty_to_annos(info):
min_height = [40, 25,
25] # minimum height for evaluated groundtruth/detections
max_occlusion = [
0, 1, 2
] # maximum occlusion level of the groundtruth used for evaluation
max_trunc = [
0.15, 0.3, 0.5
] # maximum truncation level of the groundtruth used for evaluation
annos = info['annos']
dims = annos['dimensions'] # lhw format
bbox = annos['bbox']
height = bbox[:, 3] - bbox[:, 1]
occlusion = annos['occluded']
truncation = annos['truncated']
diff = []
easy_mask = np.ones((len(dims), ), dtype=np.bool)
moderate_mask = np.ones((len(dims), ), dtype=np.bool)
hard_mask = np.ones((len(dims), ), dtype=np.bool)
i = 0
for h, o, t in zip(height, occlusion, truncation):
if o > max_occlusion[0] or h <= min_height[0] or t > max_trunc[0]:
easy_mask[i] = False
if o > max_occlusion[1] or h <= min_height[1] or t > max_trunc[1]:
moderate_mask[i] = False
if o > max_occlusion[2] or h <= min_height[2] or t > max_trunc[2]:
hard_mask[i] = False
i += 1
is_easy = easy_mask
is_moderate = np.logical_xor(easy_mask, moderate_mask)
is_hard = np.logical_xor(hard_mask, moderate_mask)
for i in range(len(dims)):
if is_easy[i]:
diff.append(0)
elif is_moderate[i]:
diff.append(1)
elif is_hard[i]:
diff.append(2)
else:
diff.append(-1)
annos["difficulty"] = np.array(diff, np.int32)
return diff
def get_label_anno(label_path):
annotations = {}
annotations.update({
'name': [],
'truncated': [],
'occluded': [],
'alpha': [],
'bbox': [],
'dimensions': [],
'location': [],
'rotation_y': []
})
with open(label_path, 'r') as f:
lines = f.readlines()
# if len(lines) == 0 or len(lines[0]) < 15:
# content = []
# else:
content = [line.strip().split(' ') for line in lines]
annotations['name'] = np.array([x[0] for x in content])
annotations['truncated'] = np.array([float(x[1]) for x in content])
annotations['occluded'] = np.array([int(x[2]) for x in content])
annotations['alpha'] = np.array([float(x[3]) for x in content])
annotations['bbox'] = np.array(
[[float(info) for info in x[4:8]] for x in content]).reshape(-1, 4)
# dimensions will convert hwl format to standard lhw(camera) format.
annotations['dimensions'] = np.array(
[[float(info) for info in x[8:11]] for x in content]).reshape(
-1, 3)[:, [2, 0, 1]]
annotations['location'] = np.array(
[[float(info) for info in x[11:14]] for x in content]).reshape(-1, 3)
annotations['rotation_y'] = np.array(
[float(x[14]) for x in content]).reshape(-1)
if len(content) != 0 and len(content[0]) == 16: # have score
annotations['score'] = np.array([float(x[15]) for x in content])
else:
annotations['score'] = np.zeros([len(annotations['bbox'])])
return annotations
def get_label_annos(label_folder, image_ids=None):
if image_ids is None:
filepaths = pathlib.Path(label_folder).glob('*.txt')
prog = re.compile(r'^\d{6}.txt$')
filepaths = filter(lambda f: prog.match(f.name), filepaths)
image_ids = [int(p.stem) for p in filepaths]
image_ids = sorted(image_ids)
if not isinstance(image_ids, list):
image_ids = list(range(image_ids))
annos = []
label_folder = pathlib.Path(label_folder)
for idx in image_ids:
image_idx = get_image_index_str(idx)
label_filename = label_folder / (image_idx + '.txt')
annos.append(get_label_anno(label_filename))
return annos
def area(boxes, add1=False):
"""Computes area of boxes.
Args:
boxes: Numpy array with shape [N, 4] holding N boxes
Returns:
a numpy array with shape [N*1] representing box areas
"""
if add1:
return (boxes[:, 2] - boxes[:, 0] + 1.0) * (
boxes[:, 3] - boxes[:, 1] + 1.0)
else:
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def intersection(boxes1, boxes2, add1=False):
"""Compute pairwise intersection areas between boxes.
Args:
boxes1: a numpy array with shape [N, 4] holding N boxes
boxes2: a numpy array with shape [M, 4] holding M boxes
Returns:
a numpy array with shape [N*M] representing pairwise intersection area
"""
[y_min1, x_min1, y_max1, x_max1] = np.split(boxes1, 4, axis=1)
[y_min2, x_min2, y_max2, x_max2] = np.split(boxes2, 4, axis=1)
all_pairs_min_ymax = np.minimum(y_max1, np.transpose(y_max2))
all_pairs_max_ymin = np.maximum(y_min1, np.transpose(y_min2))
if add1:
all_pairs_min_ymax += 1.0
intersect_heights = np.maximum(
np.zeros(all_pairs_max_ymin.shape),
all_pairs_min_ymax - all_pairs_max_ymin)
all_pairs_min_xmax = np.minimum(x_max1, np.transpose(x_max2))
all_pairs_max_xmin = np.maximum(x_min1, np.transpose(x_min2))
if add1:
all_pairs_min_xmax += 1.0
intersect_widths = np.maximum(
np.zeros(all_pairs_max_xmin.shape),
all_pairs_min_xmax - all_pairs_max_xmin)
return intersect_heights * intersect_widths
def iou(boxes1, boxes2, add1=False):
"""Computes pairwise intersection-over-union between box collections.
Args:
boxes1: a numpy array with shape [N, 4] holding N boxes.
boxes2: a numpy array with shape [M, 4] holding N boxes.
Returns:
a numpy array with shape [N, M] representing pairwise iou scores.
"""
intersect = intersection(boxes1, boxes2, add1)
area1 = area(boxes1, add1)
area2 = area(boxes2, add1)
union = np.expand_dims(
area1, axis=1) + np.expand_dims(
area2, axis=0) - intersect
return intersect / union