-
Notifications
You must be signed in to change notification settings - Fork 714
/
Copy pathdense_classifier.py
executable file
·241 lines (207 loc) · 10.1 KB
/
dense_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python
import tensorflow as tf
import math
import os
import numpy as np
# Define parameters
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('epoch_number', None, 'Number of epochs to run trainer.')
flags.DEFINE_integer("batch_size", 1024,
"indicates batch size in a single gpu, default is 1024")
flags.DEFINE_integer("thread_number", 1, "Number of thread to read data")
flags.DEFINE_integer("min_after_dequeue", 100,
"indicates min_after_dequeue of shuffle queue")
flags.DEFINE_string("output_dir", "./tensorboard/",
"indicates training output")
flags.DEFINE_string("model", "deep",
"Model to train, option model: deep, linear")
flags.DEFINE_string("optimizer", "sgd", "optimizer to import")
flags.DEFINE_integer('hidden1', 10, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 20, 'Number of units in hidden layer 2.')
flags.DEFINE_integer('steps_to_validate', 10,
'Steps to validate and print loss')
flags.DEFINE_string("mode", "train",
"Option mode: train, train_from_scratch, inference")
# For distributed
tf.app.flags.DEFINE_string("ps_hosts", "",
"Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("worker_hosts", "",
"Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("job_name", "", "One of 'ps', 'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")
# Hyperparameters
learning_rate = FLAGS.learning_rate
epoch_number = FLAGS.epoch_number
thread_number = FLAGS.thread_number
batch_size = FLAGS.batch_size
min_after_dequeue = FLAGS.min_after_dequeue
capacity = thread_number * batch_size + min_after_dequeue
FEATURE_SIZE = 9
# Read serialized examples from filename queue
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
"label": tf.FixedLenFeature([], tf.float32),
"features": tf.FixedLenFeature([FEATURE_SIZE], tf.float32),
})
label = features["label"]
features = features["features"]
return label, features
def main(_):
ps_hosts = FLAGS.ps_hosts.split(",")
worker_hosts = FLAGS.worker_hosts.split(",")
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
server = tf.train.Server(cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster)):
# Read TFRecords files
filename_queue = tf.train.string_input_producer(
tf.train.match_filenames_once("../data/cancer/cancer_train.csv.tfrecords"),
num_epochs=epoch_number)
label, features = read_and_decode(filename_queue)
batch_labels, batch_features = tf.train.shuffle_batch(
[label, features],
batch_size=batch_size,
num_threads=thread_number,
capacity=capacity,
min_after_dequeue=min_after_dequeue)
validate_filename_queue = tf.train.string_input_producer(
tf.train.match_filenames_once(
"../data/cancer/cancer_test.csv.tfrecords"),
num_epochs=epoch_number)
validate_label, validate_features = read_and_decode(
validate_filename_queue)
validate_batch_labels, validate_batch_features = tf.train.shuffle_batch(
[validate_label, validate_features],
batch_size=batch_size,
num_threads=thread_number,
capacity=capacity,
min_after_dequeue=min_after_dequeue)
# Define the model
input_units = FEATURE_SIZE
hidden1_units = FLAGS.hidden1
hidden2_units = FLAGS.hidden2
output_units = 2
# Hidden 1
weights1 = tf.Variable(
tf.truncated_normal([input_units, hidden1_units]),
dtype=tf.float32,
name='weights')
biases1 = tf.Variable(
tf.truncated_normal([hidden1_units]),
name='biases',
dtype=tf.float32)
hidden1 = tf.nn.relu(tf.matmul(batch_features, weights1) + biases1)
# Hidden 2
weights2 = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units]),
dtype=tf.float32,
name='weights')
biases2 = tf.Variable(
tf.truncated_normal([hidden2_units]),
name='biases',
dtype=tf.float32)
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights2) + biases2)
# Linear
weights3 = tf.Variable(
tf.truncated_normal([hidden2_units, output_units]),
dtype=tf.float32,
name='weights')
biases3 = tf.Variable(
tf.truncated_normal([output_units]),
name='biases',
dtype=tf.float32)
logits = tf.matmul(hidden2, weights3) + biases3
batch_labels = tf.to_int64(batch_labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=batch_labels)
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
if FLAGS.optimizer == "sgd":
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
else:
optimizer = tf.train.MomentumOptimizer(learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
# Compute accuracy
accuracy_hidden1 = tf.nn.relu(tf.matmul(validate_batch_features,
weights1) + biases1)
accuracy_hidden2 = tf.nn.relu(tf.matmul(accuracy_hidden1, weights2)
+ biases2)
accuracy_logits = tf.matmul(accuracy_hidden2, weights3) + biases3
validate_softmax = tf.nn.softmax(accuracy_logits)
validate_batch_labels = tf.to_int64(validate_batch_labels)
correct_prediction = tf.equal(
tf.argmax(validate_softmax, 1), validate_batch_labels)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# Compute auc
validate_batch_labels = tf.cast(validate_batch_labels, tf.int32)
num_labels = 2
sparse_labels = tf.reshape(validate_batch_labels, [-1, 1])
derived_size = tf.shape(validate_batch_labels)[0]
indices = tf.reshape(tf.range(0, derived_size, 1), [-1, 1])
concated = tf.concat(axis=1, values=[indices, sparse_labels])
outshape = tf.stack([derived_size, num_labels])
new_validate_batch_labels = tf.sparse_to_dense(concated, outshape,
1.0, 0.0)
_, auc_op = tf.contrib.metrics.streaming_auc(
validate_softmax, new_validate_batch_labels)
# Define inference op
inference_features = tf.placeholder("float", [None, 9])
inference_hidden1 = tf.nn.relu(tf.matmul(inference_features,
weights1) + biases1)
inference_hidden2 = tf.nn.relu(tf.matmul(inference_hidden1,
weights2) + biases2)
inference_logits = tf.matmul(inference_hidden2, weights3) + biases3
inference_softmax = tf.nn.softmax(inference_logits)
inference_op = tf.argmax(inference_softmax, 1)
saver = tf.train.Saver()
steps_to_validate = FLAGS.steps_to_validate
init_op = tf.global_variables_initializer()
tf.summary.scalar('loss', loss)
tf.summary.scalar('accuracy', accuracy)
tf.summary.scalar('auc', auc_op)
summary_op = tf.summary.merge_all()
sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0),
logdir="./checkpoint/",
init_op=init_op,
summary_op=summary_op,
saver=saver,
global_step=global_step,
save_model_secs=60)
with sv.managed_session(server.target) as sess:
step = 0
while not sv.should_stop() and step < 1000000:
# Get coordinator and run queues to read data
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
try:
while not coord.should_stop():
# Run train op
_, loss_value, step = sess.run([train_op, loss,
global_step])
if step % steps_to_validate == 0:
accuracy_value, auc_value, summary_value = sess.run(
[accuracy, auc_op, summary_op])
print(
"Step: {}, loss: {}, accuracy: {}, auc: {}".format(
step, loss_value, accuracy_value,
auc_value))
except tf.errors.OutOfRangeError:
print("Done training after reading all data")
finally:
coord.request_stop()
# Wait for threads to exit
coord.join(threads)
if __name__ == "__main__":
tf.app.run()