-
Notifications
You must be signed in to change notification settings - Fork 315
/
Copy pathtest_pyecdsa.py
2564 lines (2223 loc) · 89.1 KB
/
test_pyecdsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import with_statement, division, print_function
try:
import unittest2 as unittest
except ImportError:
import unittest
import os
import shutil
import subprocess
import pytest
import sys
from binascii import hexlify, unhexlify
import hashlib
from functools import partial
from hypothesis import given, settings
import hypothesis.strategies as st
from six import binary_type
from .keys import SigningKey, VerifyingKey
from .keys import BadSignatureError, MalformedPointError, BadDigestError
from . import util
from .util import (
sigencode_der,
sigencode_strings,
sigencode_strings_canonize,
sigencode_string_canonize,
sigencode_der_canonize,
)
from .util import sigdecode_der, sigdecode_strings, sigdecode_string
from .util import number_to_string, encoded_oid_ecPublicKey, MalformedSignature
from .curves import Curve, UnknownCurveError
from .curves import (
SECP112r1,
SECP112r2,
SECP128r1,
SECP160r1,
NIST192p,
NIST224p,
NIST256p,
NIST384p,
NIST521p,
SECP256k1,
BRAINPOOLP160r1,
BRAINPOOLP192r1,
BRAINPOOLP224r1,
BRAINPOOLP256r1,
BRAINPOOLP320r1,
BRAINPOOLP384r1,
BRAINPOOLP512r1,
BRAINPOOLP160t1,
BRAINPOOLP192t1,
BRAINPOOLP224t1,
BRAINPOOLP256t1,
BRAINPOOLP320t1,
BRAINPOOLP384t1,
BRAINPOOLP512t1,
Ed25519,
Ed448,
curves,
)
from .ecdsa import (
curve_brainpoolp224r1,
curve_brainpoolp256r1,
curve_brainpoolp384r1,
curve_brainpoolp512r1,
)
from .ellipticcurve import Point
from . import der
from . import rfc6979
from . import ecdsa
class SubprocessError(Exception):
pass
HYP_SETTINGS = {}
if "--fast" in sys.argv: # pragma: no cover
HYP_SETTINGS["max_examples"] = 2
def run_openssl(cmd):
OPENSSL = "openssl"
p = subprocess.Popen(
[OPENSSL] + cmd.split(),
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
stdout, ignored = p.communicate()
if p.returncode != 0:
raise SubprocessError(
"cmd '%s %s' failed: rc=%s, stdout/err was %s"
% (OPENSSL, cmd, p.returncode, stdout)
)
return stdout.decode()
class ECDSA(unittest.TestCase):
def test_basic(self):
priv = SigningKey.generate()
pub = priv.get_verifying_key()
data = b"blahblah"
sig = priv.sign(data)
self.assertTrue(pub.verify(sig, data))
self.assertRaises(BadSignatureError, pub.verify, sig, data + b"bad")
pub2 = VerifyingKey.from_string(pub.to_string())
self.assertTrue(pub2.verify(sig, data))
def test_deterministic(self):
data = b"blahblah"
secexp = int("9d0219792467d7d37b4d43298a7d0c05", 16)
priv = SigningKey.from_secret_exponent(
secexp, SECP256k1, hashlib.sha256
)
pub = priv.get_verifying_key()
k = rfc6979.generate_k(
SECP256k1.generator.order(),
secexp,
hashlib.sha256,
hashlib.sha256(data).digest(),
)
sig1 = priv.sign(data, k=k)
self.assertTrue(pub.verify(sig1, data))
sig2 = priv.sign(data, k=k)
self.assertTrue(pub.verify(sig2, data))
sig3 = priv.sign_deterministic(data, hashlib.sha256)
self.assertTrue(pub.verify(sig3, data))
self.assertEqual(sig1, sig2)
self.assertEqual(sig1, sig3)
def test_bad_usage(self):
# sk=SigningKey() is wrong
self.assertRaises(TypeError, SigningKey)
self.assertRaises(TypeError, VerifyingKey)
def test_lengths_default(self):
default = NIST192p
priv = SigningKey.generate()
pub = priv.get_verifying_key()
self.assertEqual(len(pub.to_string()), default.verifying_key_length)
sig = priv.sign(b"data")
self.assertEqual(len(sig), default.signature_length)
def test_serialize(self):
seed = b"secret"
curve = NIST192p
secexp1 = util.randrange_from_seed__trytryagain(seed, curve.order)
secexp2 = util.randrange_from_seed__trytryagain(seed, curve.order)
self.assertEqual(secexp1, secexp2)
priv1 = SigningKey.from_secret_exponent(secexp1, curve)
priv2 = SigningKey.from_secret_exponent(secexp2, curve)
self.assertEqual(
hexlify(priv1.to_string()), hexlify(priv2.to_string())
)
self.assertEqual(priv1.to_pem(), priv2.to_pem())
pub1 = priv1.get_verifying_key()
pub2 = priv2.get_verifying_key()
data = b"data"
sig1 = priv1.sign(data)
sig2 = priv2.sign(data)
self.assertTrue(pub1.verify(sig1, data))
self.assertTrue(pub2.verify(sig1, data))
self.assertTrue(pub1.verify(sig2, data))
self.assertTrue(pub2.verify(sig2, data))
self.assertEqual(hexlify(pub1.to_string()), hexlify(pub2.to_string()))
def test_nonrandom(self):
s = b"all the entropy in the entire world, compressed into one line"
def not_much_entropy(numbytes):
return s[:numbytes]
# we control the entropy source, these two keys should be identical:
priv1 = SigningKey.generate(entropy=not_much_entropy)
priv2 = SigningKey.generate(entropy=not_much_entropy)
self.assertEqual(
hexlify(priv1.get_verifying_key().to_string()),
hexlify(priv2.get_verifying_key().to_string()),
)
# likewise, signatures should be identical. Obviously you'd never
# want to do this with keys you care about, because the secrecy of
# the private key depends upon using different random numbers for
# each signature
sig1 = priv1.sign(b"data", entropy=not_much_entropy)
sig2 = priv2.sign(b"data", entropy=not_much_entropy)
self.assertEqual(hexlify(sig1), hexlify(sig2))
def assertTruePrivkeysEqual(self, priv1, priv2):
self.assertEqual(
priv1.privkey.secret_multiplier, priv2.privkey.secret_multiplier
)
self.assertEqual(
priv1.privkey.public_key.generator,
priv2.privkey.public_key.generator,
)
def test_privkey_creation(self):
s = b"all the entropy in the entire world, compressed into one line"
def not_much_entropy(numbytes):
return s[:numbytes]
priv1 = SigningKey.generate()
self.assertEqual(priv1.baselen, NIST192p.baselen)
priv1 = SigningKey.generate(curve=NIST224p)
self.assertEqual(priv1.baselen, NIST224p.baselen)
priv1 = SigningKey.generate(entropy=not_much_entropy)
self.assertEqual(priv1.baselen, NIST192p.baselen)
priv2 = SigningKey.generate(entropy=not_much_entropy)
self.assertEqual(priv2.baselen, NIST192p.baselen)
self.assertTruePrivkeysEqual(priv1, priv2)
priv1 = SigningKey.from_secret_exponent(secexp=3)
self.assertEqual(priv1.baselen, NIST192p.baselen)
priv2 = SigningKey.from_secret_exponent(secexp=3)
self.assertTruePrivkeysEqual(priv1, priv2)
priv1 = SigningKey.from_secret_exponent(secexp=4, curve=NIST224p)
self.assertEqual(priv1.baselen, NIST224p.baselen)
def test_privkey_strings(self):
priv1 = SigningKey.generate()
s1 = priv1.to_string()
self.assertEqual(type(s1), binary_type)
self.assertEqual(len(s1), NIST192p.baselen)
priv2 = SigningKey.from_string(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
s1 = priv1.to_pem()
self.assertEqual(type(s1), binary_type)
self.assertTrue(s1.startswith(b"-----BEGIN EC PRIVATE KEY-----"))
self.assertTrue(s1.strip().endswith(b"-----END EC PRIVATE KEY-----"))
priv2 = SigningKey.from_pem(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
s1 = priv1.to_der()
self.assertEqual(type(s1), binary_type)
priv2 = SigningKey.from_der(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
priv1 = SigningKey.generate(curve=NIST256p)
s1 = priv1.to_pem()
self.assertEqual(type(s1), binary_type)
self.assertTrue(s1.startswith(b"-----BEGIN EC PRIVATE KEY-----"))
self.assertTrue(s1.strip().endswith(b"-----END EC PRIVATE KEY-----"))
priv2 = SigningKey.from_pem(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
s1 = priv1.to_der()
self.assertEqual(type(s1), binary_type)
priv2 = SigningKey.from_der(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
def test_privkey_strings_brainpool(self):
priv1 = SigningKey.generate(curve=BRAINPOOLP512r1)
s1 = priv1.to_pem()
self.assertEqual(type(s1), binary_type)
self.assertTrue(s1.startswith(b"-----BEGIN EC PRIVATE KEY-----"))
self.assertTrue(s1.strip().endswith(b"-----END EC PRIVATE KEY-----"))
priv2 = SigningKey.from_pem(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
s1 = priv1.to_der()
self.assertEqual(type(s1), binary_type)
priv2 = SigningKey.from_der(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
def assertTruePubkeysEqual(self, pub1, pub2):
self.assertEqual(pub1.pubkey.point, pub2.pubkey.point)
self.assertEqual(pub1.pubkey.generator, pub2.pubkey.generator)
self.assertEqual(pub1.curve, pub2.curve)
def test_pubkey_strings(self):
priv1 = SigningKey.generate()
pub1 = priv1.get_verifying_key()
s1 = pub1.to_string()
self.assertEqual(type(s1), binary_type)
self.assertEqual(len(s1), NIST192p.verifying_key_length)
pub2 = VerifyingKey.from_string(s1)
self.assertTruePubkeysEqual(pub1, pub2)
priv1 = SigningKey.generate(curve=NIST256p)
pub1 = priv1.get_verifying_key()
s1 = pub1.to_string()
self.assertEqual(type(s1), binary_type)
self.assertEqual(len(s1), NIST256p.verifying_key_length)
pub2 = VerifyingKey.from_string(s1, curve=NIST256p)
self.assertTruePubkeysEqual(pub1, pub2)
pub1_der = pub1.to_der()
self.assertEqual(type(pub1_der), binary_type)
pub2 = VerifyingKey.from_der(pub1_der)
self.assertTruePubkeysEqual(pub1, pub2)
self.assertRaises(
der.UnexpectedDER, VerifyingKey.from_der, pub1_der + b"junk"
)
badpub = VerifyingKey.from_der(pub1_der)
class FakeGenerator:
def order(self):
return 123456789
class FakeCurveFp:
def p(self):
return int(
"6525534529039240705020950546962731340"
"4541085228058844382513856749047873406763"
)
badcurve = Curve(
"unknown", FakeCurveFp(), FakeGenerator(), (1, 2, 3, 4, 5, 6), None
)
badpub.curve = badcurve
badder = badpub.to_der()
self.assertRaises(UnknownCurveError, VerifyingKey.from_der, badder)
pem = pub1.to_pem()
self.assertEqual(type(pem), binary_type)
self.assertTrue(pem.startswith(b"-----BEGIN PUBLIC KEY-----"), pem)
self.assertTrue(pem.strip().endswith(b"-----END PUBLIC KEY-----"), pem)
pub2 = VerifyingKey.from_pem(pem)
self.assertTruePubkeysEqual(pub1, pub2)
def test_pubkey_strings_brainpool(self):
priv1 = SigningKey.generate(curve=BRAINPOOLP512r1)
pub1 = priv1.get_verifying_key()
s1 = pub1.to_string()
self.assertEqual(type(s1), binary_type)
self.assertEqual(len(s1), BRAINPOOLP512r1.verifying_key_length)
pub2 = VerifyingKey.from_string(s1, curve=BRAINPOOLP512r1)
self.assertTruePubkeysEqual(pub1, pub2)
pub1_der = pub1.to_der()
self.assertEqual(type(pub1_der), binary_type)
pub2 = VerifyingKey.from_der(pub1_der)
self.assertTruePubkeysEqual(pub1, pub2)
def test_vk_to_der_with_invalid_point_encoding(self):
sk = SigningKey.generate()
vk = sk.verifying_key
with self.assertRaises(ValueError):
vk.to_der("raw")
def test_sk_to_der_with_invalid_point_encoding(self):
sk = SigningKey.generate()
with self.assertRaises(ValueError):
sk.to_der("raw")
def test_vk_from_der_garbage_after_curve_oid(self):
type_oid_der = encoded_oid_ecPublicKey
curve_oid_der = (
der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) + b"garbage"
)
enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der)
point_der = der.encode_bitstring(b"\x00\xff", None)
to_decode = der.encode_sequence(enc_type_der, point_der)
with self.assertRaises(der.UnexpectedDER):
VerifyingKey.from_der(to_decode)
def test_vk_from_der_invalid_key_type(self):
type_oid_der = der.encode_oid(*(1, 2, 3))
curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1))
enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der)
point_der = der.encode_bitstring(b"\x00\xff", None)
to_decode = der.encode_sequence(enc_type_der, point_der)
with self.assertRaises(der.UnexpectedDER):
VerifyingKey.from_der(to_decode)
def test_vk_from_der_garbage_after_point_string(self):
type_oid_der = encoded_oid_ecPublicKey
curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1))
enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der)
point_der = der.encode_bitstring(b"\x00\xff", None) + b"garbage"
to_decode = der.encode_sequence(enc_type_der, point_der)
with self.assertRaises(der.UnexpectedDER):
VerifyingKey.from_der(to_decode)
def test_vk_from_der_invalid_bitstring(self):
type_oid_der = encoded_oid_ecPublicKey
curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1))
enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der)
point_der = der.encode_bitstring(b"\x08\xff", None)
to_decode = der.encode_sequence(enc_type_der, point_der)
with self.assertRaises(der.UnexpectedDER):
VerifyingKey.from_der(to_decode)
def test_vk_from_der_with_invalid_length_of_encoding(self):
type_oid_der = encoded_oid_ecPublicKey
curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1))
enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der)
point_der = der.encode_bitstring(b"\xff" * 64, 0)
to_decode = der.encode_sequence(enc_type_der, point_der)
with self.assertRaises(MalformedPointError):
VerifyingKey.from_der(to_decode)
def test_vk_from_der_with_raw_encoding(self):
type_oid_der = encoded_oid_ecPublicKey
curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1))
enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der)
point_der = der.encode_bitstring(b"\xff" * 48, 0)
to_decode = der.encode_sequence(enc_type_der, point_der)
with self.assertRaises(der.UnexpectedDER):
VerifyingKey.from_der(to_decode)
def test_signature_strings(self):
priv1 = SigningKey.generate()
pub1 = priv1.get_verifying_key()
data = b"data"
sig = priv1.sign(data)
self.assertEqual(type(sig), binary_type)
self.assertEqual(len(sig), NIST192p.signature_length)
self.assertTrue(pub1.verify(sig, data))
sig = priv1.sign(data, sigencode=sigencode_strings)
self.assertEqual(type(sig), tuple)
self.assertEqual(len(sig), 2)
self.assertEqual(type(sig[0]), binary_type)
self.assertEqual(type(sig[1]), binary_type)
self.assertEqual(len(sig[0]), NIST192p.baselen)
self.assertEqual(len(sig[1]), NIST192p.baselen)
self.assertTrue(pub1.verify(sig, data, sigdecode=sigdecode_strings))
sig_der = priv1.sign(data, sigencode=sigencode_der)
self.assertEqual(type(sig_der), binary_type)
self.assertTrue(pub1.verify(sig_der, data, sigdecode=sigdecode_der))
def test_sigencode_string_canonize_no_change(self):
r = 12
s = 400
order = SECP112r1.order
new_r, new_s = sigdecode_string(
sigencode_string_canonize(r, s, order), order
)
self.assertEqual(r, new_r)
self.assertEqual(s, new_s)
def test_sigencode_string_canonize(self):
r = 12
order = SECP112r1.order
s = order - 10
new_r, new_s = sigdecode_string(
sigencode_string_canonize(r, s, order), order
)
self.assertEqual(r, new_r)
self.assertEqual(order - s, new_s)
def test_sigencode_strings_canonize_no_change(self):
r = 12
s = 400
order = SECP112r1.order
new_r, new_s = sigdecode_strings(
sigencode_strings_canonize(r, s, order), order
)
self.assertEqual(r, new_r)
self.assertEqual(s, new_s)
def test_sigencode_strings_canonize(self):
r = 12
order = SECP112r1.order
s = order - 10
new_r, new_s = sigdecode_strings(
sigencode_strings_canonize(r, s, order), order
)
self.assertEqual(r, new_r)
self.assertEqual(order - s, new_s)
def test_sigencode_der_canonize_no_change(self):
r = 13
s = 200
order = SECP112r1.order
new_r, new_s = sigdecode_der(
sigencode_der_canonize(r, s, order), order
)
self.assertEqual(r, new_r)
self.assertEqual(s, new_s)
def test_sigencode_der_canonize(self):
r = 13
order = SECP112r1.order
s = order - 14
new_r, new_s = sigdecode_der(
sigencode_der_canonize(r, s, order), order
)
self.assertEqual(r, new_r)
self.assertEqual(order - s, new_s)
def test_sigencode_der_canonize_with_close_to_half_order(self):
r = 13
order = SECP112r1.order
s = order // 2 + 1
regular_encode = sigencode_der(r, s, order)
canonical_encode = sigencode_der_canonize(r, s, order)
self.assertNotEqual(regular_encode, canonical_encode)
new_r, new_s = sigdecode_der(
sigencode_der_canonize(r, s, order), order
)
self.assertEqual(r, new_r)
self.assertEqual(order - s, new_s)
def test_sig_decode_strings_with_invalid_count(self):
with self.assertRaises(MalformedSignature):
sigdecode_strings([b"one", b"two", b"three"], 0xFF)
def test_sig_decode_strings_with_wrong_r_len(self):
with self.assertRaises(MalformedSignature):
sigdecode_strings([b"one", b"two"], 0xFF)
def test_sig_decode_strings_with_wrong_s_len(self):
with self.assertRaises(MalformedSignature):
sigdecode_strings([b"\xa0", b"\xb0\xff"], 0xFF)
def test_verify_with_too_long_input(self):
sk = SigningKey.generate()
vk = sk.verifying_key
with self.assertRaises(BadDigestError):
vk.verify_digest(None, b"\x00" * 128)
def test_sk_from_secret_exponent_with_wrong_sec_exponent(self):
with self.assertRaises(MalformedPointError):
SigningKey.from_secret_exponent(0)
def test_sk_from_string_with_wrong_len_string(self):
with self.assertRaises(MalformedPointError):
SigningKey.from_string(b"\x01")
def test_sk_from_der_with_junk_after_sequence(self):
ver_der = der.encode_integer(1)
to_decode = der.encode_sequence(ver_der) + b"garbage"
with self.assertRaises(der.UnexpectedDER):
SigningKey.from_der(to_decode)
def test_sk_from_der_with_wrong_version(self):
ver_der = der.encode_integer(0)
to_decode = der.encode_sequence(ver_der)
with self.assertRaises(der.UnexpectedDER):
SigningKey.from_der(to_decode)
def test_sk_from_der_invalid_const_tag(self):
ver_der = der.encode_integer(1)
privkey_der = der.encode_octet_string(b"\x00\xff")
curve_oid_der = der.encode_oid(*(1, 2, 3))
const_der = der.encode_constructed(1, curve_oid_der)
to_decode = der.encode_sequence(
ver_der, privkey_der, const_der, curve_oid_der
)
with self.assertRaises(der.UnexpectedDER):
SigningKey.from_der(to_decode)
def test_sk_from_der_garbage_after_privkey_oid(self):
ver_der = der.encode_integer(1)
privkey_der = der.encode_octet_string(b"\x00\xff")
curve_oid_der = der.encode_oid(*(1, 2, 3)) + b"garbage"
const_der = der.encode_constructed(0, curve_oid_der)
to_decode = der.encode_sequence(
ver_der, privkey_der, const_der, curve_oid_der
)
with self.assertRaises(der.UnexpectedDER):
SigningKey.from_der(to_decode)
def test_sk_from_der_with_short_privkey(self):
ver_der = der.encode_integer(1)
privkey_der = der.encode_octet_string(b"\x00\xff")
curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1))
const_der = der.encode_constructed(0, curve_oid_der)
to_decode = der.encode_sequence(
ver_der, privkey_der, const_der, curve_oid_der
)
sk = SigningKey.from_der(to_decode)
self.assertEqual(sk.privkey.secret_multiplier, 255)
def test_sk_from_p8_der_with_wrong_version(self):
ver_der = der.encode_integer(2)
algorithm_der = der.encode_sequence(
der.encode_oid(1, 2, 840, 10045, 2, 1),
der.encode_oid(1, 2, 840, 10045, 3, 1, 1),
)
privkey_der = der.encode_octet_string(
der.encode_sequence(
der.encode_integer(1), der.encode_octet_string(b"\x00\xff")
)
)
to_decode = der.encode_sequence(ver_der, algorithm_der, privkey_der)
with self.assertRaises(der.UnexpectedDER):
SigningKey.from_der(to_decode)
def test_sk_from_p8_der_with_wrong_algorithm(self):
ver_der = der.encode_integer(1)
algorithm_der = der.encode_sequence(
der.encode_oid(1, 2, 3), der.encode_oid(1, 2, 840, 10045, 3, 1, 1)
)
privkey_der = der.encode_octet_string(
der.encode_sequence(
der.encode_integer(1), der.encode_octet_string(b"\x00\xff")
)
)
to_decode = der.encode_sequence(ver_der, algorithm_der, privkey_der)
with self.assertRaises(der.UnexpectedDER):
SigningKey.from_der(to_decode)
def test_sk_from_p8_der_with_trailing_junk_after_algorithm(self):
ver_der = der.encode_integer(1)
algorithm_der = der.encode_sequence(
der.encode_oid(1, 2, 840, 10045, 2, 1),
der.encode_oid(1, 2, 840, 10045, 3, 1, 1),
der.encode_octet_string(b"junk"),
)
privkey_der = der.encode_octet_string(
der.encode_sequence(
der.encode_integer(1), der.encode_octet_string(b"\x00\xff")
)
)
to_decode = der.encode_sequence(ver_der, algorithm_der, privkey_der)
with self.assertRaises(der.UnexpectedDER):
SigningKey.from_der(to_decode)
def test_sk_from_p8_der_with_trailing_junk_after_key(self):
ver_der = der.encode_integer(1)
algorithm_der = der.encode_sequence(
der.encode_oid(1, 2, 840, 10045, 2, 1),
der.encode_oid(1, 2, 840, 10045, 3, 1, 1),
)
privkey_der = der.encode_octet_string(
der.encode_sequence(
der.encode_integer(1), der.encode_octet_string(b"\x00\xff")
)
+ der.encode_integer(999)
)
to_decode = der.encode_sequence(
ver_der,
algorithm_der,
privkey_der,
der.encode_octet_string(b"junk"),
)
with self.assertRaises(der.UnexpectedDER):
SigningKey.from_der(to_decode)
def test_sign_with_too_long_hash(self):
sk = SigningKey.from_secret_exponent(12)
with self.assertRaises(BadDigestError):
sk.sign_digest(b"\xff" * 64)
def test_hashfunc(self):
sk = SigningKey.generate(curve=NIST256p, hashfunc=hashlib.sha256)
data = b"security level is 128 bits"
sig = sk.sign(data)
vk = VerifyingKey.from_string(
sk.get_verifying_key().to_string(),
curve=NIST256p,
hashfunc=hashlib.sha256,
)
self.assertTrue(vk.verify(sig, data))
sk2 = SigningKey.generate(curve=NIST256p)
sig2 = sk2.sign(data, hashfunc=hashlib.sha256)
vk2 = VerifyingKey.from_string(
sk2.get_verifying_key().to_string(),
curve=NIST256p,
hashfunc=hashlib.sha256,
)
self.assertTrue(vk2.verify(sig2, data))
vk3 = VerifyingKey.from_string(
sk.get_verifying_key().to_string(), curve=NIST256p
)
self.assertTrue(vk3.verify(sig, data, hashfunc=hashlib.sha256))
def test_public_key_recovery(self):
# Create keys
curve = BRAINPOOLP160r1
sk = SigningKey.generate(curve=curve)
vk = sk.get_verifying_key()
# Sign a message
data = b"blahblah"
signature = sk.sign(data)
# Recover verifying keys
recovered_vks = VerifyingKey.from_public_key_recovery(
signature, data, curve
)
# Test if each pk is valid
for recovered_vk in recovered_vks:
# Test if recovered vk is valid for the data
self.assertTrue(recovered_vk.verify(signature, data))
# Test if properties are equal
self.assertEqual(vk.curve, recovered_vk.curve)
self.assertEqual(
vk.default_hashfunc, recovered_vk.default_hashfunc
)
# Test if original vk is the list of recovered keys
self.assertIn(
vk.pubkey.point,
[recovered_vk.pubkey.point for recovered_vk in recovered_vks],
)
def test_public_key_recovery_with_custom_hash(self):
# Create keys
curve = BRAINPOOLP160r1
sk = SigningKey.generate(curve=curve, hashfunc=hashlib.sha256)
vk = sk.get_verifying_key()
# Sign a message
data = b"blahblah"
signature = sk.sign(data)
# Recover verifying keys
recovered_vks = VerifyingKey.from_public_key_recovery(
signature,
data,
curve,
hashfunc=hashlib.sha256,
allow_truncate=True,
)
# Test if each pk is valid
for recovered_vk in recovered_vks:
# Test if recovered vk is valid for the data
self.assertTrue(recovered_vk.verify(signature, data))
# Test if properties are equal
self.assertEqual(vk.curve, recovered_vk.curve)
self.assertEqual(hashlib.sha256, recovered_vk.default_hashfunc)
# Test if original vk is the list of recovered keys
self.assertIn(
vk.pubkey.point,
[recovered_vk.pubkey.point for recovered_vk in recovered_vks],
)
def test_encoding(self):
sk = SigningKey.from_secret_exponent(123456789)
vk = sk.verifying_key
exp = (
b"\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3"
b"\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4"
b"z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*"
)
self.assertEqual(vk.to_string(), exp)
self.assertEqual(vk.to_string("raw"), exp)
self.assertEqual(vk.to_string("uncompressed"), b"\x04" + exp)
self.assertEqual(vk.to_string("compressed"), b"\x02" + exp[:24])
self.assertEqual(vk.to_string("hybrid"), b"\x06" + exp)
def test_decoding(self):
sk = SigningKey.from_secret_exponent(123456789)
vk = sk.verifying_key
enc = (
b"\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3"
b"\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4"
b"z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*"
)
from_raw = VerifyingKey.from_string(enc)
self.assertEqual(from_raw.pubkey.point, vk.pubkey.point)
from_uncompressed = VerifyingKey.from_string(b"\x04" + enc)
self.assertEqual(from_uncompressed.pubkey.point, vk.pubkey.point)
from_compressed = VerifyingKey.from_string(b"\x02" + enc[:24])
self.assertEqual(from_compressed.pubkey.point, vk.pubkey.point)
from_uncompressed = VerifyingKey.from_string(b"\x06" + enc)
self.assertEqual(from_uncompressed.pubkey.point, vk.pubkey.point)
def test_uncompressed_decoding_as_only_alowed(self):
enc = (
b"\x04"
b"\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3"
b"\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4"
b"z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*"
)
vk = VerifyingKey.from_string(enc, valid_encodings=("uncompressed",))
sk = SigningKey.from_secret_exponent(123456789)
self.assertEqual(vk, sk.verifying_key)
def test_raw_decoding_with_blocked_format(self):
enc = (
b"\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3"
b"\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4"
b"z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*"
)
with self.assertRaises(MalformedPointError) as exp:
VerifyingKey.from_string(enc, valid_encodings=("hybrid",))
self.assertIn("hybrid", str(exp.exception))
def test_decoding_with_unknown_format(self):
with self.assertRaises(ValueError) as e:
VerifyingKey.from_string(b"", valid_encodings=("raw", "foobar"))
self.assertIn("Only uncompressed, compressed", str(e.exception))
def test_uncompressed_decoding_with_blocked_format(self):
enc = (
b"\x04"
b"\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3"
b"\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4"
b"z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*"
)
with self.assertRaises(MalformedPointError) as exp:
VerifyingKey.from_string(enc, valid_encodings=("hybrid",))
self.assertIn("Invalid X9.62 encoding", str(exp.exception))
def test_hybrid_decoding_with_blocked_format(self):
enc = (
b"\x06"
b"\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3"
b"\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4"
b"z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*"
)
with self.assertRaises(MalformedPointError) as exp:
VerifyingKey.from_string(enc, valid_encodings=("uncompressed",))
self.assertIn("Invalid X9.62 encoding", str(exp.exception))
def test_hybrid_decoding_with_inconsistent_encoding_and_no_validation(
self,
):
sk = SigningKey.from_secret_exponent(123456789)
vk = sk.verifying_key
enc = vk.to_string("hybrid")
self.assertEqual(enc[:1], b"\x06")
enc = b"\x07" + enc[1:]
b = VerifyingKey.from_string(
enc, valid_encodings=("hybrid",), validate_point=False
)
self.assertEqual(vk, b)
def test_compressed_decoding_with_blocked_format(self):
enc = (
b"\x02"
b"\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3"
b"\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4"
b"z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*"
)[:25]
with self.assertRaises(MalformedPointError) as exp:
VerifyingKey.from_string(enc, valid_encodings=("hybrid", "raw"))
self.assertIn("(hybrid, raw)", str(exp.exception))
def test_decoding_with_malformed_uncompressed(self):
enc = (
b"\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3"
b"\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4"
b"z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*"
)
with self.assertRaises(MalformedPointError):
VerifyingKey.from_string(b"\x02" + enc)
def test_decoding_with_malformed_compressed(self):
enc = (
b"\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3"
b"\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4"
b"z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*"
)
with self.assertRaises(MalformedPointError):
VerifyingKey.from_string(b"\x01" + enc[:24])
def test_decoding_with_inconsistent_hybrid(self):
enc = (
b"\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3"
b"\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4"
b"z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*"
)
with self.assertRaises(MalformedPointError):
VerifyingKey.from_string(b"\x07" + enc)
def test_decoding_with_inconsistent_hybrid_odd_point(self):
sk = SigningKey.from_secret_exponent(123456791)
vk = sk.verifying_key
enc = vk.to_string("hybrid")
self.assertEqual(enc[:1], b"\x07")
enc = b"\x06" + enc[1:]
with self.assertRaises(MalformedPointError):
b = VerifyingKey.from_string(enc, valid_encodings=("hybrid",))
def test_decoding_with_point_not_on_curve(self):
enc = (
b"\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3"
b"\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4"
b"z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*"
)
with self.assertRaises(MalformedPointError):
VerifyingKey.from_string(enc[:47] + b"\x00")
def test_decoding_with_point_at_infinity(self):
# decoding it is unsupported, as it's not necessary to encode it
with self.assertRaises(MalformedPointError):
VerifyingKey.from_string(b"\x00")
def test_not_lying_on_curve(self):
enc = number_to_string(NIST192p.curve.p(), NIST192p.curve.p() + 1)
with self.assertRaises(MalformedPointError):
VerifyingKey.from_string(b"\x02" + enc)
def test_from_string_with_invalid_curve_too_short_ver_key_len(self):
# both verifying_key_length and baselen are calculated internally
# by the Curve constructor, but since we depend on them verify
# that inconsistent values are detected
curve = Curve("test", ecdsa.curve_192, ecdsa.generator_192, (1, 2))
curve.verifying_key_length = 16
curve.baselen = 32
with self.assertRaises(MalformedPointError):
VerifyingKey.from_string(b"\x00" * 16, curve)
def test_from_string_with_invalid_curve_too_long_ver_key_len(self):
# both verifying_key_length and baselen are calculated internally
# by the Curve constructor, but since we depend on them verify
# that inconsistent values are detected
curve = Curve("test", ecdsa.curve_192, ecdsa.generator_192, (1, 2))
curve.verifying_key_length = 16
curve.baselen = 16
with self.assertRaises(MalformedPointError):
VerifyingKey.from_string(b"\x00" * 16, curve)
@pytest.mark.parametrize(
"val,even", [(i, j) for i in range(256) for j in [True, False]]
)
def test_VerifyingKey_decode_with_small_values(val, even):
enc = number_to_string(val, NIST192p.order)
if even:
enc = b"\x02" + enc
else:
enc = b"\x03" + enc
# small values can both be actual valid public keys and not, verify that