|
| 1 | +---- MODULE DiningPhilosophers ---- |
| 2 | + |
| 3 | +(* |
| 4 | +TLA+ / PlusCal implementation of the Dining Philosophers problem. |
| 5 | +Based on the exercise given in https://learntla.com/temporal-logic/operators/ |
| 6 | +
|
| 7 | +This is an implementation of the Chandy-Misra solution. |
| 8 | +https://en.wikipedia.org/wiki/Dining_philosophers_problem#Chandy/Misra_solution |
| 9 | +
|
| 10 | +In Dijkstra's original formulation of the problem, philosophers may not speak |
| 11 | +to each other and cannot hand forks to each other. |
| 12 | +
|
| 13 | +In the Chandy-Misra formulation, philosophers may hand forks directly to each |
| 14 | +other. |
| 15 | +
|
| 16 | +I ran this with alygin's TLA+ extension for VSCode: |
| 17 | + https://marketplace.visualstudio.com/items?itemName=alygin.vscode-tlaplus |
| 18 | +"> TLA+: Parse module" updates the translated TLA+ to match the PlusCal |
| 19 | + 'algorithm' above. |
| 20 | +"> TLA+: Check model with TLC" checks the model's correctness. |
| 21 | +
|
| 22 | +You can also use TLA+ Toolbox. You may need to "create a model" and |
| 23 | +use the UI to add the invariants and properties at the bottom of this file. |
| 24 | +*) |
| 25 | + |
| 26 | +EXTENDS Integers, TLC |
| 27 | + |
| 28 | +CONSTANTS |
| 29 | + \* Number of philosophers |
| 30 | + NP |
| 31 | + |
| 32 | +ASSUME |
| 33 | + /\ NP \in Nat \ {0} |
| 34 | + |
| 35 | +(* --algorithm DiningPhilosophers |
| 36 | + |
| 37 | +variables |
| 38 | + forks = [ |
| 39 | + fork \in 1..NP |-> [ |
| 40 | + \* We start with each fork held by the lowest-number philosopher |
| 41 | + \* adjacent to the fork. |
| 42 | + holder |-> IF fork = 2 THEN 1 ELSE fork, |
| 43 | + \* Each fork starts out "dirty". Eating causes a fork to become |
| 44 | + \* dirty, after which the philosopher must clean the fork and hand |
| 45 | + \* it to their neighbor. |
| 46 | + clean |-> FALSE |
| 47 | + ] |
| 48 | + ] |
| 49 | + |
| 50 | +define |
| 51 | + LeftFork(p) == p |
| 52 | + RightFork(p) == IF p = NP THEN 1 ELSE p + 1 |
| 53 | + |
| 54 | + LeftPhilosopher(p) == IF p = 1 THEN NP ELSE p - 1 |
| 55 | + RightPhilosopher(p) == IF p = NP THEN 1 ELSE p + 1 |
| 56 | + |
| 57 | + IsHoldingBothForks(p) == |
| 58 | + forks[LeftFork(p)].holder = p /\ forks[RightFork(p)].holder = p |
| 59 | + BothForksAreClean(p) == |
| 60 | + forks[LeftFork(p)].clean /\ forks[RightFork(p)].clean |
| 61 | + |
| 62 | + CanEat(p) == IsHoldingBothForks(p) /\ BothForksAreClean(p) |
| 63 | +end define; |
| 64 | + |
| 65 | +\* This spawns 'NP' parallel Philosopher processes. |
| 66 | +\* |
| 67 | +\* A process looks kind of like an object oriented class, but '\in 1..NP' means |
| 68 | +\* it's really just an integer between 1 and NP. Use 'self' to access that |
| 69 | +\* integer. |
| 70 | +\* |
| 71 | +\* If you remove the 'fair' in 'fair process', each process can stop at any |
| 72 | +\* time and will never run again. Dining philosophers don't randomly die while |
| 73 | +\* clenching forks in the original problem, so let's keep the processes fair. |
| 74 | +fair process Philosopher \in 1..NP |
| 75 | +\* This acts like a member variable and you can access it like one. But we're |
| 76 | +\* actually creating an array with one element per process, and the "member |
| 77 | +\* variable" we access is just the corresponding bucket in that array. |
| 78 | +variables hungry = TRUE; |
| 79 | +begin |
| 80 | +Loop: |
| 81 | + while TRUE do |
| 82 | + \* Check if we're holding dirty forks that other philosophers might |
| 83 | + \* want. |
| 84 | + if |
| 85 | + /\ forks[LeftFork(self)].holder = self |
| 86 | + /\ ~forks[LeftFork(self)].clean |
| 87 | + then |
| 88 | + forks[LeftFork(self)] := [ |
| 89 | + holder |-> LeftPhilosopher(self), |
| 90 | + clean |-> TRUE |
| 91 | + ]; |
| 92 | + elsif |
| 93 | + /\ forks[RightFork(self)].holder = self |
| 94 | + /\ ~forks[RightFork(self)].clean |
| 95 | + then |
| 96 | + forks[RightFork(self)] := [ |
| 97 | + holder |-> RightPhilosopher(self), |
| 98 | + clean |-> TRUE |
| 99 | + ]; |
| 100 | + end if; |
| 101 | + if hungry then |
| 102 | + if CanEat(self) then |
| 103 | +Eat: |
| 104 | + hungry := FALSE; |
| 105 | + forks[LeftFork(self)].clean := FALSE || |
| 106 | + forks[RightFork(self)].clean := FALSE; |
| 107 | + end if; |
| 108 | + else |
| 109 | +Think: |
| 110 | + hungry := TRUE; |
| 111 | + end if; |
| 112 | + end while; |
| 113 | +end process; |
| 114 | + |
| 115 | +end algorithm; *) |
| 116 | +\* BEGIN TRANSLATION (chksum(pcal) = "8d8268d4" /\ chksum(tla) = "16352822") |
| 117 | +VARIABLES forks, pc |
| 118 | + |
| 119 | +(* define statement *) |
| 120 | +LeftFork(p) == p |
| 121 | +RightFork(p) == IF p = NP THEN 1 ELSE p + 1 |
| 122 | + |
| 123 | +LeftPhilosopher(p) == IF p = 1 THEN NP ELSE p - 1 |
| 124 | +RightPhilosopher(p) == IF p = NP THEN 1 ELSE p + 1 |
| 125 | + |
| 126 | +IsHoldingBothForks(p) == |
| 127 | + forks[LeftFork(p)].holder = p /\ forks[RightFork(p)].holder = p |
| 128 | +BothForksAreClean(p) == |
| 129 | + forks[LeftFork(p)].clean /\ forks[RightFork(p)].clean |
| 130 | + |
| 131 | +CanEat(p) == IsHoldingBothForks(p) /\ BothForksAreClean(p) |
| 132 | + |
| 133 | +VARIABLE hungry |
| 134 | + |
| 135 | +vars == << forks, pc, hungry >> |
| 136 | + |
| 137 | +ProcSet == (1..NP) |
| 138 | + |
| 139 | +Init == (* Global variables *) |
| 140 | + /\ forks = [ |
| 141 | + fork \in 1..NP |-> [ |
| 142 | + |
| 143 | + |
| 144 | + holder |-> IF fork = 2 THEN 1 ELSE fork, |
| 145 | + |
| 146 | + |
| 147 | + |
| 148 | + clean |-> FALSE |
| 149 | + ] |
| 150 | + ] |
| 151 | + (* Process Philosopher *) |
| 152 | + /\ hungry = [self \in 1..NP |-> TRUE] |
| 153 | + /\ pc = [self \in ProcSet |-> "Loop"] |
| 154 | + |
| 155 | +Loop(self) == /\ pc[self] = "Loop" |
| 156 | + /\ IF /\ forks[LeftFork(self)].holder = self |
| 157 | + /\ ~forks[LeftFork(self)].clean |
| 158 | + THEN /\ forks' = [forks EXCEPT ![LeftFork(self)] = [ |
| 159 | + holder |-> LeftPhilosopher(self), |
| 160 | + clean |-> TRUE |
| 161 | + ]] |
| 162 | + ELSE /\ IF /\ forks[RightFork(self)].holder = self |
| 163 | + /\ ~forks[RightFork(self)].clean |
| 164 | + THEN /\ forks' = [forks EXCEPT ![RightFork(self)] = [ |
| 165 | + holder |-> RightPhilosopher(self), |
| 166 | + clean |-> TRUE |
| 167 | + ]] |
| 168 | + ELSE /\ TRUE |
| 169 | + /\ forks' = forks |
| 170 | + /\ IF hungry[self] |
| 171 | + THEN /\ IF CanEat(self) |
| 172 | + THEN /\ pc' = [pc EXCEPT ![self] = "Eat"] |
| 173 | + ELSE /\ pc' = [pc EXCEPT ![self] = "Loop"] |
| 174 | + ELSE /\ pc' = [pc EXCEPT ![self] = "Think"] |
| 175 | + /\ UNCHANGED hungry |
| 176 | + |
| 177 | +Think(self) == /\ pc[self] = "Think" |
| 178 | + /\ hungry' = [hungry EXCEPT ![self] = TRUE] |
| 179 | + /\ pc' = [pc EXCEPT ![self] = "Loop"] |
| 180 | + /\ forks' = forks |
| 181 | + |
| 182 | +Eat(self) == /\ pc[self] = "Eat" |
| 183 | + /\ hungry' = [hungry EXCEPT ![self] = FALSE] |
| 184 | + /\ forks' = [forks EXCEPT ![LeftFork(self)].clean = FALSE, |
| 185 | + ![RightFork(self)].clean = FALSE] |
| 186 | + /\ pc' = [pc EXCEPT ![self] = "Loop"] |
| 187 | + |
| 188 | +Philosopher(self) == Loop(self) \/ Think(self) \/ Eat(self) |
| 189 | + |
| 190 | +Next == (\E self \in 1..NP: Philosopher(self)) |
| 191 | + |
| 192 | +Spec == /\ Init /\ [][Next]_vars |
| 193 | + /\ \A self \in 1..NP : WF_vars(Philosopher(self)) |
| 194 | + |
| 195 | +\* END TRANSLATION |
| 196 | + |
| 197 | +---- |
| 198 | +(* Invariant helpers *) |
| 199 | +---- |
| 200 | + |
| 201 | +(* TRUE iff philosophers p and q share a fork between them. *) |
| 202 | +ShareFork(p, q) == |
| 203 | + {LeftFork(p), RightFork(p)} \cap {LeftFork(q), RightFork(q)} /= {} |
| 204 | + |
| 205 | +---- |
| 206 | +(* Invariants *) |
| 207 | +---- |
| 208 | + |
| 209 | +(* |
| 210 | +TLA+ and PlusCal are dynamically-typed, but we can roll our own typechecking |
| 211 | +with an invariant. |
| 212 | +*) |
| 213 | +TypeOK == |
| 214 | + /\ forks \in [1..NP -> [holder: 1..NP, clean: BOOLEAN]] |
| 215 | + /\ hungry \in [1..NP -> BOOLEAN] |
| 216 | + /\ pc \in [1..NP -> {"Loop", "Eat", "Think"}] |
| 217 | + |
| 218 | +(* If two philosophers share a fork, they cannot eat at the same time. *) |
| 219 | +ExclusiveAccess == |
| 220 | + \A p,q \in 1..NP: |
| 221 | + p /= q /\ ShareFork(p, q) => ~(pc[p] = "Eat" /\ pc[q] = "Eat") |
| 222 | + |
| 223 | +---- |
| 224 | +(* Properties *) |
| 225 | +---- |
| 226 | + |
| 227 | +(* |
| 228 | +Every philosopher will eventually get to eat again. |
| 229 | +*) |
| 230 | +NobodyStarves == \A p \in 1..NP: []<>(~hungry[p]) |
| 231 | + |
| 232 | +==== |
0 commit comments