-
Notifications
You must be signed in to change notification settings - Fork 206
/
Copy pathAddTwo.tla
60 lines (46 loc) · 1.71 KB
/
AddTwo.tla
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
------------------------------ MODULE AddTwo --------------------------------
(***************************************************************************)
(* Defines a very simple algorithm that continually increments a variable *)
(* by 2. We try to prove that this variable is always divisible by 2. *)
(* This was created as an exercise in learning the absolute basics of the *)
(* proof language. *)
(***************************************************************************)
EXTENDS Naturals, TLAPS
(****************************************************************************
--algorithm Increase {
variable x = 0; {
while (TRUE) {
x := x + 2
}
}
}
****************************************************************************)
\* BEGIN TRANSLATION (chksum(pcal) = "b4b07666" /\ chksum(tla) = "8adfa002")
VARIABLE x
vars == << x >>
Init == (* Global variables *)
/\ x = 0
Next == x' = x + 2
Spec == Init /\ [][Next]_vars
\* END TRANSLATION
TypeOK == x \in Nat
THEOREM TypeInvariant == Spec => []TypeOK
<1>a. Init => TypeOK
BY DEF Init, TypeOK
<1>b. TypeOK /\ UNCHANGED vars => TypeOK'
BY DEF TypeOK, vars
<1>c. TypeOK /\ Next => TypeOK'
BY DEF TypeOK, Next
<1> QED BY PTL, <1>a, <1>b, <1>c DEF Spec
a|b == \E c \in Nat : a*c = b
Even == 2|x
THEOREM Spec => []Even
<1>a. Init => Even
BY DEF Init, Even, |
<1>b. Even /\ UNCHANGED vars => Even'
BY DEF Even, vars
<1>c. Even /\ Next => Even'
BY \A c \in Nat : c+1 \in Nat /\ 2*(c+1) = 2*c + 2, Zenon
DEF TypeOK, Even, Next, |
<1> QED BY PTL, <1>a, <1>b, <1>c DEF Spec
=============================================================================