-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting.py
92 lines (74 loc) · 3.14 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from sklearn.model_selection import train_test_split
import numpy as np
from tqdm import tqdm
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import pickle
def get_windows(y_test, label, win_len = 10):
indices = [i for i, x in enumerate(y_test) if x == label]
ranges = sum((list(t) for t in zip(indices, indices[1:]) if t[0]+1 != t[1]), [])
iranges = iter(indices[0:1] + ranges + indices[-1:])
range_list = []
for n in iranges:
s = n
e = next(iranges)
diff = e - s
number_of_windows = diff // win_len
for num in range (0,number_of_windows): # +1 added
range_list.append([s + (win_len * num) , s + (win_len * (num+1)) , label])
return range_list
x = np.load('x.npy')
y = np.load('y.npy')
patient_ids = np.load('patient_ids.npy')
x.tolist()
y.tolist()
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, shuffle=False)
range_list_1 = get_windows(y_test, 1)
range_list_0 = get_windows(y_test, 0)
y_new = sorted(range_list_0 + range_list_1) # windowed y labels and ranges
x_test_new = []
y_test_new = []
for s_e_l in y_new:
lists = []
for se in range(s_e_l[0], s_e_l[1]):
lists.append(X_test[se].flatten())
lists = np.asarray(lists)
# print(lists.shape)
x_test_new.append(lists)
y_test_new.append(s_e_l[2])
x_test_new = np.asarray(x_test_new)
y_test_new = np.asarray(y_test_new)
# print((y_new))
print((x_test_new.shape))
print((y_test_new.shape))
def prediction(test_data, trained):
# predict list of test
predict_label = []
predict_probs = []
predict_max = []
if type(test_data) == type([]):
for test in tqdm(test_data):
scores = []
for node in trained.keys():
scores.append(trained[node].score(test))
predict_label.append(scores.index(max(scores)))
predict_probs.append(scores[0] - scores[1])
predict_max.append(max(scores))
return predict_label, predict_probs, predict_max
def report(y_test, y_pred, show_cm=True):
# print("confusion_matrix:\n\n", confusion_matrix(y_test, y_pred))
print("----------------------------------------------------------")
print("----------------------------------------------------------\n")
print("Classification based on outputting the most likely class by finding the maximum between two scores")
print("\n")
print("classification_report:\n\n", classification_report(y_test, y_pred, target_names=['nonspeech', 'speech']))
# print("----------------------------------------------------------")
print("----------------------------------------------------------\n")
print("Accuracy:", accuracy_score(y_test, y_pred))
# print("----------------------------------------------------------")
print("----------------------------------------------------------\n")
# if show_cm:
# plot_confusion_matrix(confusion_matrix(y_test, y_pred), ['nonspeech', 'speech'])
with open("test.pkl", "rb") as file:
learned_hmm = pickle.load(file)
y_pred, y_probs, y_max = prediction(list(x_test_new), learned_hmm)
report(y_test_new, y_pred, show_cm=True)