-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_webrtc.py
242 lines (205 loc) · 9.15 KB
/
test_webrtc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import collections
import contextlib
import sys
import wave
import pandas as pd
import os
import webrtcvad
from tqdm import tqdm
def read_wave(path):
"""Reads a .wav file.
Takes the path, and returns (PCM audio data, sample rate).
"""
with contextlib.closing(wave.open(path, 'rb')) as wf:
num_channels = wf.getnchannels()
assert num_channels == 1
sample_width = wf.getsampwidth()
assert sample_width == 2
sample_rate = wf.getframerate()
assert sample_rate in (8000, 16000, 32000, 48000)
pcm_data = wf.readframes(wf.getnframes())
return pcm_data, sample_rate
class Frame(object):
"""Represents a "frame" of audio data."""
def __init__(self, bytes, timestamp, duration):
self.bytes = bytes
self.timestamp = timestamp
self.duration = duration
def frame_generator(frame_duration_ms, audio, sample_rate):
"""Generates audio frames from PCM audio data.
Takes the desired frame duration in milliseconds, the PCM data, and
the sample rate.
Yields Frames of the requested duration.
"""
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
offset = 0
timestamp = 0.0
duration = (float(n) / sample_rate) / 2.0
while offset + n < len(audio):
yield Frame(audio[offset:offset + n], timestamp, duration)
timestamp += duration
offset += n
def vad_collector(sample_rate, frame_duration_ms,
padding_duration_ms, vad, frames):
"""Filters out non-voiced audio frames.
Given a webrtcvad.Vad and a source of audio frames, yields only
the voiced audio.
Uses a padded, sliding window algorithm over the audio frames.
When more than 90% of the frames in the window are voiced (as
reported by the VAD), the collector triggers and begins yielding
audio frames. Then the collector waits until 90% of the frames in
the window are unvoiced to detrigger.
The window is padded at the front and back to provide a small
amount of silence or the beginnings/endings of speech around the
voiced frames.
Arguments:
sample_rate - The audio sample rate, in Hz.
frame_duration_ms - The frame duration in milliseconds.
padding_duration_ms - The amount to pad the window, in milliseconds.
vad - An instance of webrtcvad.Vad.
frames - a source of audio frames (sequence or generator).
Returns: A generator that yields PCM audio data.
"""
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
# We use a deque for our sliding window/ring buffer.
ring_buffer = collections.deque(maxlen=num_padding_frames)
# We have two states: TRIGGERED and NOTTRIGGERED. We start in the
# NOTTRIGGERED state.
triggered = False
voiced_frames = []
counter = 0
for frame in frames:
is_speech = vad.is_speech(frame.bytes, sample_rate)
# sys.stdout.write('1\t' if is_speech else '0\t')
# sys.stdout.write(str(counter * 0.03))
# print("\n")
counter += 1
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
# If we're NOTTRIGGERED and more than 90% of the frames in
# the ring buffer are voiced frames, then enter the
# TRIGGERED state.
if num_voiced > 0.9 * ring_buffer.maxlen:
triggered = True
start = ring_buffer[0][0].timestamp
# sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,))
# We want to yield all the audio we see from now until
# we are NOTTRIGGERED, but we have to start with the
# audio that's already in the ring buffer.
for f, s in ring_buffer:
voiced_frames.append(f)
ring_buffer.clear()
else:
# We're in the TRIGGERED state, so collect the audio data
# and add it to the ring buffer.
voiced_frames.append(frame)
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
# If more than 90% of the frames in the ring buffer are
# unvoiced, then enter NOTTRIGGERED and yield whatever
# audio we've collected.
if num_unvoiced > 0.9 * ring_buffer.maxlen:
end = frame.timestamp + frame.duration
# sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
triggered = False
yield start, end
ring_buffer.clear()
voiced_frames = []
if triggered:
# sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
end = frame.timestamp + frame.duration
# sys.stdout.write('\n')
# If we have any leftover voiced audio when we run out of input,
# yield it.
if voiced_frames:
yield start, end
def vad_collector_salaar(sample_rate, frame_duration_ms,
padding_duration_ms, vad, frames):
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
ring_buffer = collections.deque(maxlen=num_padding_frames)
triggered = False
voiced_frames = []
for frame in frames:
# sys.stdout.write('1' if vad.is_speech(frame.bytes, sampleRate) else '0')
if not triggered:
ring_buffer.append(frame)
num_voiced = len([f for f in ring_buffer
if vad.is_speech(f.bytes, sample_rate)])
if num_voiced > 0.9 * ring_buffer.maxlen:
# sys.stdout.write('+(%s)' % (ring_buffer[0].timestamp,))
triggered = True
voiced_frames.extend(ring_buffer)
ring_buffer.clear()
else:
voiced_frames.append(frame)
ring_buffer.append(frame)
num_unvoiced = len([f for f in ring_buffer
if not vad.is_speech(f.bytes, sample_rate)])
if num_unvoiced > 0.9 * ring_buffer.maxlen:
# sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
triggered = False
yield [f for f in voiced_frames]
ring_buffer.clear()
voiced_frames = []
# if triggered:
# sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
# sys.stdout.write('\n')
if voiced_frames:
yield [f for f in voiced_frames]
def get_voiced_segments(wav_file, agressiveness):
audio, sample_rate = read_wave(wav_file)
frames = list(frame_generator(30, audio, sample_rate))
vad = webrtcvad.Vad(agressiveness)
segments = vad_collector_salaar(sample_rate, 30, 300, vad, frames)
segs = []
for seg in segments:
timestamp = float(seg[0].timestamp)
duration = 0
for frame in seg:
duration += frame.duration
segs.append({"start": int(timestamp * sample_rate), "end": int(timestamp + duration) * sample_rate})
assert segs[-1]["end"] <= len(audio)/2
return segs, sample_rate, len(audio)/2
def write_wave(path, audio, sample_rate):
"""Writes a .wav file.
Takes path, PCM audio data, and sample rate.
"""
with contextlib.closing(wave.open(path, 'wb')) as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio)
def calculate_vad(filename, aggressiveness):
df = pd.DataFrame(columns=['label', 'src_start_ts', 'src_end_ts', 'src_file'])
vad = webrtcvad.Vad(aggressiveness)
audio, sample_rate = read_wave(filename)
frames = frame_generator(30, audio, sample_rate)
frames = list(frames)
segments = vad_collector(sample_rate, 30, 300, vad, frames)
for i, segment in enumerate(segments):
df = df.append({'label': 's', 'src_start_ts': segment[0], 'src_end_ts': segment[1], 'src_file': os.path.basename(filename)}
, ignore_index=True)
return df
def main():
COL_LIST = ["src_start_ts", "src_end_ts", "label", "src_file"]
df_mapped = pd.read_csv('/mnt/FS1/copd-data/speech/mapped_labels.csv', usecols=COL_LIST)
basepath = '/mnt/FS1/copd-data/main/features/'
df = pd.DataFrame(columns=['label', 'src_start_ts', 'src_end_ts', 'src_file'])
df_all = pd.read_csv('/home/tina/all_files.csv')
# filenames = df_all['src_file']
# filenames = df_all['src_file'][~df_all['src_file'].isin(df_mapped['src_file'])]
# filenames = ['copdpatient30/wav/audio_1491817653115.wav']
filenames = ['copdpatient23/wav/audio_1490317763916.wav'] # copdpatient21/wav/audio_1480460148641.wav
for filename in tqdm(filenames):
df_partial = calculate_vad(basepath + filename, 3)
df = df.append(df_partial, ignore_index=True)
# for filename in tqdm(filenames):
# segs, samplerate, len = get_voiced_segments(basepath + filename, 3) # basepath + filename
# for seg in segs:
# df1 = pd.DataFrame(columns=['label', 'src_start_ts', 'src_end_ts', 'src_file'])
# df1.loc[0] = ['s', seg['start']/16000, seg['end']/16000, filename]
# df = df.append(df1, ignore_index=True)
print(df)
# df.to_csv('sileneces_0.csv')
main()