-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathtest_6drot.py
99 lines (72 loc) · 2.54 KB
/
test_6drot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
from scipy.spatial.transform import Rotation as R
def convert_quaternion_to_euler(quat):
"""
Convert Quarternion (xyzw) to Euler angles (rpy)
"""
# Normalize
quat = quat / np.linalg.norm(quat)
euler = R.from_quat(quat).as_euler('xyz')
return euler
def convert_euler_to_quaternion(euler):
"""
Convert Euler angles (rpy) to Quarternion (xyzw)
"""
quat = R.from_euler('xyz', euler).as_quat()
return quat
def convert_euler_to_rotation_matrix(euler):
"""
Convert Euler angles (rpy) to rotation matrix (3x3).
"""
quat = R.from_euler('xyz', euler).as_matrix()
return quat
def convert_rotation_matrix_to_euler(rotmat):
"""
Convert rotation matrix (3x3) to Euler angles (rpy).
"""
r = R.from_matrix(rotmat)
euler = r.as_euler('xyz', degrees=False)
return euler
def normalize_vector(v):
v_mag = np.linalg.norm(v, axis=-1, keepdims=True)
v_mag = np.maximum(v_mag, 1e-8)
return v / v_mag
def cross_product(u, v):
i = u[:,1]*v[:,2] - u[:,2]*v[:,1]
j = u[:,2]*v[:,0] - u[:,0]*v[:,2]
k = u[:,0]*v[:,1] - u[:,1]*v[:,0]
out = np.stack((i, j, k), axis=1)
return out
def compute_rotation_matrix_from_ortho6d(ortho6d):
x_raw = ortho6d[:, 0:3]
y_raw = ortho6d[:, 3:6]
x = normalize_vector(x_raw)
z = cross_product(x, y_raw)
z = normalize_vector(z)
y = cross_product(z, x)
x = x.reshape(-1, 3, 1)
y = y.reshape(-1, 3, 1)
z = z.reshape(-1, 3, 1)
matrix = np.concatenate((x, y, z), axis=2)
return matrix
def compute_ortho6d_from_rotation_matrix(matrix):
# The ortho6d represents the first two column vectors a1 and a2 of the
# rotation matrix: [ | , |, | ]
# [ a1, a2, a3]
# [ | , |, | ]
ortho6d = matrix[:, :, :2].transpose(0, 2, 1).reshape(matrix.shape[0], -1)
return ortho6d
# Test
if __name__ == "__main__":
# Randomly generate a euler ange
euler = np.random.rand(3) * 2 * np.pi - np.pi
euler = euler[None, :] # Add batch dimension
print(f"Input Euler angles: {euler}")
# Convert to 6D Rotation
rotmat = convert_euler_to_rotation_matrix(euler)
ortho6d = compute_ortho6d_from_rotation_matrix(rotmat)
print(f"6D Rotation: {ortho6d}")
# Convert back to Euler angles
rotmat_recovered = compute_rotation_matrix_from_ortho6d(ortho6d)
euler_recovered = convert_rotation_matrix_to_euler(rotmat_recovered)
print(f"Recovered Euler angles: {euler_recovered}")