-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathloading_bay_vision.py
178 lines (146 loc) · 6.09 KB
/
loading_bay_vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from camera_manager import CameraManager
from connection import NTConnection
from magic_numbers import *
from utilities.functions import (
get_corners_from_contour,
get_values_solvepnp,
order_rectangle,
)
import cv2
import numpy as np
import time
import math
class Vision:
def __init__(self, camera_manager: CameraManager, connection: NTConnection) -> None:
self.camera_manager = camera_manager
self.connection = connection
self.image = np.zeros((FRAME_HEIGHT, FRAME_WIDTH, 3), np.uint8)
self.mask = np.zeros((FRAME_HEIGHT, FRAME_WIDTH), np.uint8)
self.hsv = np.zeros((FRAME_HEIGHT, FRAME_WIDTH, 3), np.uint8)
def run(self) -> None:
"""Run the main vision loop once."""
self.connection.pong()
frame_time, self.frame = self.camera_manager.get_frame()
if not frame_time:
error = self.camera_manager.get_error()
self.camera_manager.notify_error(error)
return
self.frame = cv2.rotate(self.frame, cv2.ROTATE_180, dst=self.frame)
results = self.get_image_values(self.frame)
if results is not None:
distance, angle = results
self.connection.send_results((distance, angle, time.monotonic()))
self.camera_manager.send_frame(self.image)
def get_image_values(self, frame: np.ndarray):
self.hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV, dst=self.hsv)
self.mask = cv2.inRange(
self.hsv,
LOADING_BAY_HSV_LOWER_BOUND,
LOADING_BAY_HSV_UPPER_BOUND,
dst=self.mask,
)
self.image = cv2.cvtColor(self.mask, cv2.COLOR_GRAY2BGR, dst=self.image)
*_, cnts, hierarchy = cv2.findContours(
self.mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE
)
cnts = np.array(cnts)
if not len(cnts):
return None
hierarchy = np.array(hierarchy[0])
inner_rects = {}
outer_rects = {}
for i, cnt in enumerate(cnts):
# The 3rd (4th) element of hierarchy is its parent.
# When parent is -1, it has no parent and therefore it an outer rectangle.
if hierarchy[i][3] == -1:
outer_rects[i] = {"contour": cnt, "hierarchy": hierarchy[i]}
else:
inner_rects[i] = {"contour": cnt, "hierarchy": hierarchy[i]}
if not (inner_rects and outer_rects):
return None
good_pairs = []
for i in inner_rects:
inner_rects[i]["area"] = cv2.contourArea(inner_rects[i]["contour"])
if inner_rects[i]["area"] > MIN_CONTOUR_AREA:
parent = outer_rects[inner_rects[i]["hierarchy"][3]]
success, inner, outer = self.test_contour_pair(inner_rects[i], parent)
if success:
good_pairs.append((inner_rects[i], parent))
if not good_pairs:
return None
for inner, outer in good_pairs:
self.draw_contour_pair(inner, outer)
ordered_points = np.concatenate(
(
order_rectangle(outer["rect"], inverted=True),
order_rectangle(inner["rect"], inverted=True),
)
)
results = get_values_solvepnp(
ordered_points.astype(np.float32),
LOADING_BAY_POINTS,
C920_2_INTR_MATRIX,
C920_2_DIST_COEFFS,
)
print(results)
return results
def test_contour_pair(self, inner: dict, outer: dict) -> bool:
"""Test if a given contour pair is a valid loading bay.
Tests include (in order):
The number of points in the inner contour is greater than 3,
The number of points in the outer contour is greater than 3,
The ratio of the areas of the two contours,
The approximated inner contour has 4 sides,
The approximated outer contour has 4 sides,
The ratio of the areas of the inner contour and its approximated contour,
The ratio of the areas of the outer contour and its approximated contour,
Args:
inner: The inner contour (a dictionary (like how was created earlier)).
outer: The outer contour (a dictionary (like how was created earlier))
Returns:
A boolean of whether or not the pair is valid.
inner: The inner contour (with the rectangle added)
outer: The outer contour (with the rectangle and area added)
"""
if not (inner["contour"].shape[0] > 3):
return False, inner, outer
if not (outer["contour"].shape[0] > 3):
return False, inner, outer
outer["area"] = cv2.contourArea(outer["contour"])
if not (
abs(outer["area"] / inner["area"] - LOADING_INNER_OUTER_RATIO)
< INNER_OUTER_ERROR
):
return False, inner, outer
inner["rect"] = get_corners_from_contour(inner["contour"])
if not len(inner["rect"]) == 4:
return False, inner, outer
outer["rect"] = get_corners_from_contour(outer["contour"])
if not len(outer["rect"]) == 4:
return False, inner, outer
if not (
abs(inner["area"] / cv2.contourArea(inner["rect"]) - 1)
< RAW_RECT_AREA_ERROR
):
return False, inner, outer
if not (
abs(outer["area"] / cv2.contourArea(outer["rect"]) - 1)
< RAW_RECT_AREA_ERROR
):
return False, inner, outer
return True, inner, outer
def draw_contour_pair(self, inner: dict, outer: dict) -> None:
"""Draw the inner and outer contours on self.image"""
self.image = cv2.drawContours(
self.image, inner["rect"].reshape((1, 4, 2)), -1, (255, 0, 0), thickness=2
)
self.image = cv2.drawContours(
self.image, outer["rect"].reshape((1, 4, 2)), -1, (0, 0, 255), thickness=2
)
if __name__ == "__main__":
vision = Vision(
CameraManager("Loading Bay Camera", "/dev/video0", 240, 320, 30, "kYUYV"),
NTConnection(),
)
while True:
vision.run()