This repository was archived by the owner on Feb 13, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathCoLA.swift
199 lines (176 loc) · 7.2 KB
/
CoLA.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Copyright 2020 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Originaly adapted from:
// https://gist.github.com/eaplatanios/5163c8d503f9e56f11b5b058fb041d62
import Foundation
import ModelSupport
import TensorFlow
/// CoLA example.
public struct CoLAExample {
/// The unique identifier representing the `Example`.
public let id: String
/// The text of the `Example`.
public let sentence: String
/// The label of the `Example`.
public let isAcceptable: Bool?
/// Creates an instance from `id`, `sentence` and `isAcceptable`.
public init(id: String, sentence: String, isAcceptable: Bool?) {
self.id = id
self.sentence = sentence
self.isAcceptable = isAcceptable
}
}
public struct CoLA<Entropy: RandomNumberGenerator> {
/// The directory where the dataset will be downloaded
public let directoryURL: URL
/// A `TextBatch` with the corresponding labels.
public typealias LabeledTextBatch = LabeledData<TextBatch, Tensor<Int32>>
/// The type of the labeled samples.
public typealias Samples = LazyMapSequence<[CoLAExample], LabeledTextBatch>
/// The training texts.
public let trainingExamples: Samples
/// The validation texts.
public let validationExamples: Samples
/// The sequence length to which every sentence will be padded.
public let maxSequenceLength: Int
/// The batch size.
public let batchSize: Int
/// The type of the collection of batches.
public typealias Batches = Slices<Sampling<Samples, ArraySlice<Int>>>
/// The type of the training sequence of epochs.
public typealias TrainEpochs = LazyMapSequence<TrainingEpochs<Samples, Entropy>,
LazyMapSequence<Batches, LabeledTextBatch>>
/// The sequence of training data (epochs of batches).
public var trainingEpochs: TrainEpochs
/// The validation batches.
public var validationBatches: LazyMapSequence<Slices<Samples>, LabeledTextBatch>
/// The url from which to download the dataset.
private let url: URL = URL(
string: String(
"https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/"
+ "o/data%2FCoLA.zip?alt=media&token=46d5e637-3411-4188-bc44-5809b5bfb5f4"))!
}
// Data
extension CoLA {
internal static func load(fromFile fileURL: URL, isTest: Bool = false) throws -> [CoLAExample] {
let lines = try parse(tsvFileAt: fileURL)
if isTest {
// The test data file has a header.
return lines.dropFirst().enumerated().map { (i, lineParts) in
CoLAExample(id: lineParts[0], sentence: lineParts[1], isAcceptable: nil)
}
}
return lines.enumerated().map { (i, lineParts) in
CoLAExample(id: lineParts[0], sentence: lineParts[3], isAcceptable: lineParts[1] == "1")
}
}
}
internal func parse(tsvFileAt fileURL: URL) throws -> [[String]] {
try Data(contentsOf: fileURL).withUnsafeBytes {
$0.split(separator: UInt8(ascii: "\n")).map {
$0.split(separator: UInt8(ascii: "\t"), omittingEmptySubsequences: false)
.map { String(decoding: UnsafeRawBufferPointer(rebasing: $0), as: UTF8.self) }
}
}
}
extension CoLA {
/// Creates an instance in `taskDirectoryURL` with batches of size `batchSize`
/// by `maximumSequenceLength`.
///
/// - Parameters:
/// - entropy: a source of randomness used to shuffle sample ordering. It
/// will be stored in `self`, so if it is only pseudorandom and has value
/// semantics, the sequence of epochs is determinstic and not dependent on
/// other operations.
/// - exampleMap: a transform that processes `Example` in `LabeledTextBatch`.
public init(
taskDirectoryURL: URL,
maxSequenceLength: Int,
batchSize: Int,
entropy: Entropy,
on device: Device = .default,
exampleMap: @escaping (CoLAExample) -> LabeledTextBatch
) throws {
self.directoryURL = taskDirectoryURL.appendingPathComponent("CoLA")
let dataURL = directoryURL.appendingPathComponent("data")
let compressedDataURL = dataURL.appendingPathComponent("downloaded-data.zip")
// Download the data, if necessary.
try download(from: url, to: compressedDataURL)
// Extract the data, if necessary.
let extractedDirectoryURL = compressedDataURL.deletingPathExtension()
if !FileManager.default.fileExists(atPath: extractedDirectoryURL.path) {
try extract(zipFileAt: compressedDataURL, to: extractedDirectoryURL)
}
#if false
// FIXME: Need to generalize `DatasetUtilities.downloadResource` to accept
// arbitrary full URLs instead of constructing full URL from filename and
// file extension.
DatasetUtilities.downloadResource(
filename: "\(subDirectory)", fileExtension: "zip",
remoteRoot: url.deletingLastPathComponent(),
localStorageDirectory: directory)
#endif
// Load the data files.
let dataFilesURL = extractedDirectoryURL.appendingPathComponent("CoLA")
trainingExamples = try CoLA.load(
fromFile: dataFilesURL.appendingPathComponent("train.tsv")
).lazy.map(exampleMap)
validationExamples = try CoLA.load(
fromFile: dataFilesURL.appendingPathComponent("dev.tsv")
).lazy.map(exampleMap)
self.maxSequenceLength = maxSequenceLength
self.batchSize = batchSize
// Create the training sequence of epochs.
trainingEpochs = TrainingEpochs(
samples: trainingExamples, batchSize: batchSize / maxSequenceLength, entropy: entropy
).lazy.map { (batches: Batches) -> LazyMapSequence<Batches, LabeledTextBatch> in
batches.lazy.map{
LabeledData(
data: $0.map(\.data).paddedAndCollated(to: maxSequenceLength, on: device),
label: Tensor(copying: Tensor($0.map(\.label)), to: device)
)
}
}
// Create the validation collection of batches.
validationBatches = validationExamples.inBatches(of: batchSize / maxSequenceLength).lazy.map{
LabeledData(
data: $0.map(\.data).paddedAndCollated(to: maxSequenceLength, on: device),
label: Tensor(copying: Tensor($0.map(\.label)), to: device)
)
}
}
}
extension CoLA where Entropy == SystemRandomNumberGenerator {
/// Creates an instance in `taskDirectoryURL` with batches of size `batchSize`
/// by `maximumSequenceLength`.
///
/// - Parameter exampleMap: a transform that processes `Example` in `LabeledTextBatch`.
public init(
taskDirectoryURL: URL,
maxSequenceLength: Int,
batchSize: Int,
on device: Device = .default,
exampleMap: @escaping (CoLAExample) -> LabeledTextBatch
) throws {
try self.init(
taskDirectoryURL: taskDirectoryURL,
maxSequenceLength: maxSequenceLength,
batchSize: batchSize,
entropy: SystemRandomNumberGenerator(),
on: device,
exampleMap: exampleMap
)
}
}