-
Notifications
You must be signed in to change notification settings - Fork 45.6k
/
Copy pathdetection_generator.py
1607 lines (1477 loc) · 64.7 KB
/
detection_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains definitions of generators to generate the final detections."""
import contextlib
from typing import Any, Dict, List, Optional, Mapping, Sequence, Tuple
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.modeling.layers import edgetpu
from official.vision.ops import box_ops
from official.vision.ops import nms
from official.vision.ops import preprocess_ops
def _generate_detections_v1(
boxes: tf.Tensor,
scores: tf.Tensor,
attributes: Optional[Mapping[str, tf.Tensor]] = None,
pre_nms_top_k: int = 5000,
pre_nms_score_threshold: float = 0.05,
nms_iou_threshold: float = 0.5,
max_num_detections: int = 100,
soft_nms_sigma: Optional[float] = None,
):
"""Generates the final detections given the model outputs.
The implementation unrolls the batch dimension and process images one by one.
It required the batch dimension to be statically known and it is TPU
compatible.
Args:
boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
`[batch_size, N, 1, 4]` for box predictions on all feature levels. The N
is the number of total anchors on all levels.
scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
stacks class probability on all feature levels. The N is the number of
total anchors on all levels. The num_classes is the number of classes
predicted by the model. Note that the class_outputs here is the raw score.
attributes: None or a dict of (attribute_name, attributes) pairs. Each
attributes is a `tf.Tensor` with shape `[batch_size, N, num_classes,
attribute_size]` or `[batch_size, N, 1, attribute_size]` for attribute
predictions on all feature levels. The N is the number of total anchors on
all levels. Can be None if no attribute learning is required.
pre_nms_top_k: An `int` number of top candidate detections per class before
NMS.
pre_nms_score_threshold: A `float` representing the threshold for deciding
when to remove boxes based on score.
nms_iou_threshold: A `float` representing the threshold for deciding whether
boxes overlap too much with respect to IOU.
max_num_detections: A scalar representing maximum number of boxes retained
over all classes.
soft_nms_sigma: A `float` representing the sigma parameter for Soft NMS.
When soft_nms_sigma=0.0 (which is default), we fall back to standard NMS.
Returns:
nms_boxes: A `float` type `tf.Tensor` of shape
`[batch_size, max_num_detections, 4]` representing top detected boxes in
`[y1, x1, y2, x2]`.
nms_scores: A `float` type `tf.Tensor` of shape
`[batch_size, max_num_detections]` representing sorted confidence scores
for detected boxes. The values are between `[0, 1]`.
nms_classes: An `int` type `tf.Tensor` of shape
`[batch_size, max_num_detections]` representing classes for detected
boxes.
valid_detections: An `int` type `tf.Tensor` of shape `[batch_size]` only the
top `valid_detections` boxes are valid detections.
nms_attributes: None or a dict of (attribute_name, attributes). Each
attribute is a `float` type `tf.Tensor` of shape
`[batch_size, max_num_detections, attribute_size]` representing attribute
predictions for detected boxes. Can be an empty dict if no attribute
learning is required.
"""
with tf.name_scope('generate_detections'):
batch_size = scores.get_shape().as_list()[0]
nmsed_boxes = []
nmsed_classes = []
nmsed_scores = []
valid_detections = []
if attributes:
nmsed_attributes = {att_name: [] for att_name in attributes.keys()}
else:
nmsed_attributes = {}
for i in range(batch_size):
(
nmsed_boxes_i,
nmsed_scores_i,
nmsed_classes_i,
valid_detections_i,
nmsed_att_i,
) = _generate_detections_per_image(
boxes[i],
scores[i],
attributes={att_name: att[i] for att_name, att in attributes.items()}
if attributes
else {},
pre_nms_top_k=pre_nms_top_k,
pre_nms_score_threshold=pre_nms_score_threshold,
nms_iou_threshold=nms_iou_threshold,
max_num_detections=max_num_detections,
soft_nms_sigma=soft_nms_sigma,
)
nmsed_boxes.append(nmsed_boxes_i)
nmsed_scores.append(nmsed_scores_i)
nmsed_classes.append(nmsed_classes_i)
valid_detections.append(valid_detections_i)
if attributes:
for att_name in attributes.keys():
nmsed_attributes[att_name].append(nmsed_att_i[att_name])
nmsed_boxes = tf.stack(nmsed_boxes, axis=0)
nmsed_scores = tf.stack(nmsed_scores, axis=0)
nmsed_classes = tf.stack(nmsed_classes, axis=0)
valid_detections = tf.stack(valid_detections, axis=0)
if attributes:
for att_name in attributes.keys():
nmsed_attributes[att_name] = tf.stack(nmsed_attributes[att_name], axis=0)
return (
nmsed_boxes,
nmsed_scores,
nmsed_classes,
valid_detections,
nmsed_attributes,
)
def _generate_detections_per_image(
boxes: tf.Tensor,
scores: tf.Tensor,
attributes: Optional[Mapping[str, tf.Tensor]] = None,
pre_nms_top_k: int = 5000,
pre_nms_score_threshold: float = 0.05,
nms_iou_threshold: float = 0.5,
max_num_detections: int = 100,
soft_nms_sigma: Optional[float] = None,
):
"""Generates the final detections per image given the model outputs.
Args:
boxes: A `tf.Tensor` with shape `[N, num_classes, 4]` or `[N, 1, 4]`, which
box predictions on all feature levels. The N is the number of total
anchors on all levels.
scores: A `tf.Tensor` with shape `[N, num_classes]`, which stacks class
probability on all feature levels. The N is the number of total anchors on
all levels. The num_classes is the number of classes predicted by the
model. Note that the class_outputs here is the raw score.
attributes: If not None, a dict of `tf.Tensor`. Each value is in shape `[N,
num_classes, attribute_size]` or `[N, 1, attribute_size]` of attribute
predictions on all feature levels. The N is the number of total anchors on
all levels.
pre_nms_top_k: An `int` number of top candidate detections per class before
NMS.
pre_nms_score_threshold: A `float` representing the threshold for deciding
when to remove boxes based on score.
nms_iou_threshold: A `float` representing the threshold for deciding whether
boxes overlap too much with respect to IOU.
max_num_detections: A `scalar` representing maximum number of boxes retained
over all classes.
soft_nms_sigma: A `float` representing the sigma parameter for Soft NMS.
When soft_nms_sigma=0.0, we fall back to standard NMS. If set to None,
`tf.image.non_max_suppression_padded` is called instead.
Returns:
nms_boxes: A `float` tf.Tensor of shape `[max_num_detections, 4]`
representing top detected boxes in `[y1, x1, y2, x2]`.
nms_scores: A `float` tf.Tensor of shape `[max_num_detections]` representing
sorted confidence scores for detected boxes. The values are between [0,
1].
nms_classes: An `int` tf.Tensor of shape `[max_num_detections]` representing
classes for detected boxes.
valid_detections: An `int` tf.Tensor of shape [1] only the top
`valid_detections` boxes are valid detections.
nms_attributes: None or a dict. Each value is a `float` tf.Tensor of shape
`[max_num_detections, attribute_size]` representing attribute predictions
for detected boxes. Can be an empty dict if `attributes` is None.
"""
nmsed_boxes = []
nmsed_scores = []
nmsed_classes = []
num_classes_for_box = boxes.get_shape().as_list()[1]
num_classes = scores.get_shape().as_list()[1]
if attributes:
nmsed_attributes = {att_name: [] for att_name in attributes.keys()}
else:
nmsed_attributes = {}
for i in range(num_classes):
boxes_i = boxes[:, min(num_classes_for_box - 1, i)]
scores_i = scores[:, i]
# Obtains pre_nms_top_k before running NMS.
scores_i, indices = tf.nn.top_k(
scores_i, k=tf.minimum(tf.shape(scores_i)[-1], pre_nms_top_k)
)
boxes_i = tf.gather(boxes_i, indices)
if soft_nms_sigma is not None:
(nmsed_indices_i, nmsed_scores_i) = (
tf.image.non_max_suppression_with_scores(
tf.cast(boxes_i, tf.float32),
tf.cast(scores_i, tf.float32),
max_num_detections,
iou_threshold=nms_iou_threshold,
score_threshold=pre_nms_score_threshold,
soft_nms_sigma=soft_nms_sigma,
name='nms_detections_' + str(i),
)
)
nmsed_boxes_i = tf.gather(boxes_i, nmsed_indices_i)
nmsed_boxes_i = preprocess_ops.clip_or_pad_to_fixed_size(
nmsed_boxes_i, max_num_detections, 0.0
)
nmsed_scores_i = preprocess_ops.clip_or_pad_to_fixed_size(
nmsed_scores_i, max_num_detections, -1.0
)
else:
(nmsed_indices_i, nmsed_num_valid_i) = (
tf.image.non_max_suppression_padded(
tf.cast(boxes_i, tf.float32),
tf.cast(scores_i, tf.float32),
max_num_detections,
iou_threshold=nms_iou_threshold,
score_threshold=pre_nms_score_threshold,
pad_to_max_output_size=True,
name='nms_detections_' + str(i),
)
)
nmsed_boxes_i = tf.gather(boxes_i, nmsed_indices_i)
nmsed_scores_i = tf.gather(scores_i, nmsed_indices_i)
# Sets scores of invalid boxes to -1.
nmsed_scores_i = tf.where(
tf.less(tf.range(max_num_detections), [nmsed_num_valid_i]),
nmsed_scores_i,
-tf.ones_like(nmsed_scores_i),
)
nmsed_classes_i = tf.fill([max_num_detections], i)
nmsed_boxes.append(nmsed_boxes_i)
nmsed_scores.append(nmsed_scores_i)
nmsed_classes.append(nmsed_classes_i)
if attributes:
for att_name, att in attributes.items():
num_classes_for_attr = att.get_shape().as_list()[1]
att_i = att[:, min(num_classes_for_attr - 1, i)]
att_i = tf.gather(att_i, indices)
nmsed_att_i = tf.gather(att_i, nmsed_indices_i)
nmsed_att_i = preprocess_ops.clip_or_pad_to_fixed_size(
nmsed_att_i, max_num_detections, 0.0
)
nmsed_attributes[att_name].append(nmsed_att_i)
# Concats results from all classes and sort them.
nmsed_boxes = tf.concat(nmsed_boxes, axis=0)
nmsed_scores = tf.concat(nmsed_scores, axis=0)
nmsed_classes = tf.concat(nmsed_classes, axis=0)
nmsed_scores, indices = tf.nn.top_k(
nmsed_scores, k=max_num_detections, sorted=True
)
nmsed_boxes = tf.gather(nmsed_boxes, indices)
nmsed_classes = tf.gather(nmsed_classes, indices)
valid_detections = tf.reduce_sum(
tf.cast(tf.greater(nmsed_scores, -1), tf.int32)
)
if attributes:
for att_name in attributes.keys():
nmsed_attributes[att_name] = tf.concat(nmsed_attributes[att_name], axis=0)
nmsed_attributes[att_name] = tf.gather(
nmsed_attributes[att_name], indices
)
return (
nmsed_boxes,
nmsed_scores,
nmsed_classes,
valid_detections,
nmsed_attributes,
)
def _select_top_k_scores(scores_in: tf.Tensor, pre_nms_num_detections: int):
"""Selects top_k scores and indices for each class.
Args:
scores_in: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
stacks class logit outputs on all feature levels. The N is the number of
total anchors on all levels. The num_classes is the number of classes
predicted by the model.
pre_nms_num_detections: Number of candidates before NMS.
Returns:
scores and indices: A `tf.Tensor` with shape
`[batch_size, pre_nms_num_detections, num_classes]`.
"""
batch_size, num_anchors, num_class = scores_in.get_shape().as_list()
if batch_size is None:
batch_size = tf.shape(scores_in)[0]
scores_trans = tf.transpose(scores_in, perm=[0, 2, 1])
scores_trans = tf.reshape(scores_trans, [-1, num_anchors])
top_k_scores, top_k_indices = tf.nn.top_k(
scores_trans, k=pre_nms_num_detections, sorted=True
)
top_k_scores = tf.reshape(
top_k_scores, [batch_size, num_class, pre_nms_num_detections]
)
top_k_indices = tf.reshape(
top_k_indices, [batch_size, num_class, pre_nms_num_detections]
)
return tf.transpose(top_k_scores, [0, 2, 1]), tf.transpose(
top_k_indices, [0, 2, 1]
)
def _generate_detections_v2_class_agnostic(
boxes: tf.Tensor,
scores: tf.Tensor,
pre_nms_top_k: int = 5000,
pre_nms_score_threshold: float = 0.05,
nms_iou_threshold: float = 0.5,
max_num_detections: int = 100
):
"""Generates the final detections by applying class-agnostic NMS.
Args:
boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
`[batch_size, N, 1, 4]`, which box predictions on all feature levels. The
N is the number of total anchors on all levels.
scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
stacks class probability on all feature levels. The N is the number of
total anchors on all levels. The num_classes is the number of classes
predicted by the model. Note that the class_outputs here is the raw score.
pre_nms_top_k: An `int` number of top candidate detections per class before
NMS.
pre_nms_score_threshold: A `float` representing the threshold for deciding
when to remove boxes based on score.
nms_iou_threshold: A `float` representing the threshold for deciding whether
boxes overlap too much with respect to IOU.
max_num_detections: A `scalar` representing maximum number of boxes retained
over all classes.
Returns:
nms_boxes: A `float` tf.Tensor of shape [batch_size, max_num_detections, 4]
representing top detected boxes in [y1, x1, y2, x2].
nms_scores: A `float` tf.Tensor of shape [batch_size, max_num_detections]
representing sorted confidence scores for detected boxes. The values are
between [0, 1].
nms_classes: An `int` tf.Tensor of shape [batch_size, max_num_detections]
representing classes for detected boxes.
valid_detections: An `int` tf.Tensor of shape [batch_size] only the top
`valid_detections` boxes are valid detections.
"""
with tf.name_scope('generate_detections_class_agnostic'):
nmsed_boxes = []
nmsed_classes = []
nmsed_scores = []
valid_detections = []
batch_size, _, num_classes_for_box, _ = boxes.get_shape().as_list()
if batch_size is None:
batch_size = tf.shape(boxes)[0]
_, total_anchors, _ = scores.get_shape().as_list()
# Keeps only the class with highest score for each predicted box.
scores_condensed, classes_ids = tf.nn.top_k(
scores, k=1, sorted=True
)
scores_condensed = tf.squeeze(scores_condensed, axis=[2])
if num_classes_for_box > 1:
boxes = tf.gather(boxes, classes_ids, axis=2, batch_dims=2)
boxes_condensed = tf.squeeze(boxes, axis=[2])
classes_condensed = tf.squeeze(classes_ids, axis=[2])
# Selects top pre_nms_num scores and indices before NMS.
num_anchors_filtered = min(total_anchors, pre_nms_top_k)
scores_filtered, indices_filtered = tf.nn.top_k(
scores_condensed, k=num_anchors_filtered, sorted=True
)
classes_filtered = tf.gather(
classes_condensed, indices_filtered, axis=1, batch_dims=1
)
boxes_filtered = tf.gather(
boxes_condensed, indices_filtered, axis=1, batch_dims=1
)
tf.ensure_shape(boxes_filtered, [None, num_anchors_filtered, 4])
tf.ensure_shape(classes_filtered, [None, num_anchors_filtered])
tf.ensure_shape(scores_filtered, [None, num_anchors_filtered])
boxes_filtered = tf.cast(
boxes_filtered, tf.float32
)
scores_filtered = tf.cast(
scores_filtered, tf.float32
)
# Apply class-agnostic NMS on boxes.
(nmsed_indices_padded, valid_detections) = (
tf.image.non_max_suppression_padded(
boxes=boxes_filtered,
scores=scores_filtered,
max_output_size=max_num_detections,
iou_threshold=nms_iou_threshold,
pad_to_max_output_size=True,
score_threshold=pre_nms_score_threshold,
sorted_input=True,
name='nms_detections'
)
)
nmsed_boxes = tf.gather(
boxes_filtered, nmsed_indices_padded, batch_dims=1, axis=1
)
nmsed_scores = tf.gather(
scores_filtered, nmsed_indices_padded, batch_dims=1, axis=1
)
nmsed_classes = tf.gather(
classes_filtered, nmsed_indices_padded, batch_dims=1, axis=1
)
# Sets the padded boxes, scores, and classes to 0.
padding_mask = tf.reshape(
tf.range(max_num_detections), [1, -1]
) < tf.reshape(valid_detections, [-1, 1])
nmsed_boxes = nmsed_boxes * tf.cast(
tf.expand_dims(padding_mask, axis=2), nmsed_boxes.dtype
)
nmsed_scores = nmsed_scores * tf.cast(padding_mask, nmsed_scores.dtype)
nmsed_classes = nmsed_classes * tf.cast(padding_mask, nmsed_classes.dtype)
return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections
def _generate_detections_v2_class_aware(
boxes: tf.Tensor,
scores: tf.Tensor,
pre_nms_top_k: int = 5000,
pre_nms_score_threshold: float = 0.05,
nms_iou_threshold: float = 0.5,
max_num_detections: int = 100,
):
"""Generates the final detections by using class-aware NMS.
Args:
boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
`[batch_size, N, 1, 4]`, which box predictions on all feature levels. The
N is the number of total anchors on all levels.
scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
stacks class probability on all feature levels. The N is the number of
total anchors on all levels. The num_classes is the number of classes
predicted by the model. Note that the class_outputs here is the raw score.
pre_nms_top_k: An `int` number of top candidate detections per class before
NMS.
pre_nms_score_threshold: A `float` representing the threshold for deciding
when to remove boxes based on score.
nms_iou_threshold: A `float` representing the threshold for deciding whether
boxes overlap too much with respect to IOU.
max_num_detections: A `scalar` representing maximum number of boxes retained
over all classes.
Returns:
nms_boxes: A `float` tf.Tensor of shape [batch_size, max_num_detections, 4]
representing top detected boxes in [y1, x1, y2, x2].
nms_scores: A `float` tf.Tensor of shape [batch_size, max_num_detections]
representing sorted confidence scores for detected boxes. The values are
between [0, 1].
nms_classes: An `int` tf.Tensor of shape [batch_size, max_num_detections]
representing classes for detected boxes.
valid_detections: An `int` tf.Tensor of shape [batch_size] only the top
`valid_detections` boxes are valid detections.
"""
with tf.name_scope('generate_detections'):
nmsed_boxes = []
nmsed_classes = []
nmsed_scores = []
valid_detections = []
batch_size, _, num_classes_for_box, _ = boxes.get_shape().as_list()
if batch_size is None:
batch_size = tf.shape(boxes)[0]
_, total_anchors, num_classes = scores.get_shape().as_list()
# Selects top pre_nms_num scores and indices before NMS.
scores, indices = _select_top_k_scores(
scores, min(total_anchors, pre_nms_top_k)
)
for i in range(num_classes):
boxes_i = boxes[:, :, min(num_classes_for_box - 1, i), :]
scores_i = scores[:, :, i]
# Obtains pre_nms_top_k before running NMS.
boxes_i = tf.gather(boxes_i, indices[:, :, i], batch_dims=1, axis=1)
# Filter out scores.
boxes_i, scores_i = box_ops.filter_boxes_by_scores(
boxes_i, scores_i, min_score_threshold=pre_nms_score_threshold
)
(nmsed_scores_i, nmsed_boxes_i) = nms.sorted_non_max_suppression_padded(
tf.cast(scores_i, tf.float32),
tf.cast(boxes_i, tf.float32),
max_num_detections,
iou_threshold=nms_iou_threshold,
)
nmsed_classes_i = tf.fill([batch_size, max_num_detections], i)
nmsed_boxes.append(nmsed_boxes_i)
nmsed_scores.append(nmsed_scores_i)
nmsed_classes.append(nmsed_classes_i)
nmsed_boxes = tf.concat(nmsed_boxes, axis=1)
nmsed_scores = tf.concat(nmsed_scores, axis=1)
nmsed_classes = tf.concat(nmsed_classes, axis=1)
nmsed_scores, indices = tf.nn.top_k(
nmsed_scores, k=max_num_detections, sorted=True
)
nmsed_boxes = tf.gather(nmsed_boxes, indices, batch_dims=1, axis=1)
nmsed_classes = tf.gather(nmsed_classes, indices, batch_dims=1)
valid_detections = tf.reduce_sum(
input_tensor=tf.cast(tf.greater(nmsed_scores, 0.0), tf.int32), axis=1
)
return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections
def _generate_detections_v2(
boxes: tf.Tensor,
scores: tf.Tensor,
pre_nms_top_k: int = 5000,
pre_nms_score_threshold: float = 0.05,
nms_iou_threshold: float = 0.5,
max_num_detections: int = 100,
use_class_agnostic_nms: Optional[bool] = None,
):
"""Generates the final detections given the model outputs.
This implementation unrolls classes dimension while using the tf.while_loop
to implement the batched NMS, so that it can be parallelized at the batch
dimension. It should give better performance comparing to v1 implementation.
It is TPU compatible.
Args:
boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
`[batch_size, N, 1, 4]`, which box predictions on all feature levels. The
N is the number of total anchors on all levels.
scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
stacks class probability on all feature levels. The N is the number of
total anchors on all levels. The num_classes is the number of classes
predicted by the model. Note that the class_outputs here is the raw score.
pre_nms_top_k: An `int` number of top candidate detections per class before
NMS.
pre_nms_score_threshold: A `float` representing the threshold for deciding
when to remove boxes based on score.
nms_iou_threshold: A `float` representing the threshold for deciding whether
boxes overlap too much with respect to IOU.
max_num_detections: A `scalar` representing maximum number of boxes retained
over all classes.
use_class_agnostic_nms: A `bool` of whether non max suppression is operated
on all the boxes using max scores across all classes.
Returns:
nms_boxes: A `float` tf.Tensor of shape [batch_size, max_num_detections, 4]
representing top detected boxes in [y1, x1, y2, x2].
nms_scores: A `float` tf.Tensor of shape [batch_size, max_num_detections]
representing sorted confidence scores for detected boxes. The values are
between [0, 1].
nms_classes: An `int` tf.Tensor of shape [batch_size, max_num_detections]
representing classes for detected boxes.
valid_detections: An `int` tf.Tensor of shape [batch_size] only the top
`valid_detections` boxes are valid detections.
"""
if use_class_agnostic_nms:
return _generate_detections_v2_class_agnostic(
boxes=boxes,
scores=scores,
pre_nms_top_k=pre_nms_top_k,
pre_nms_score_threshold=pre_nms_score_threshold,
nms_iou_threshold=nms_iou_threshold,
max_num_detections=max_num_detections,
)
return _generate_detections_v2_class_aware(
boxes=boxes,
scores=scores,
pre_nms_top_k=pre_nms_top_k,
pre_nms_score_threshold=pre_nms_score_threshold,
nms_iou_threshold=nms_iou_threshold,
max_num_detections=max_num_detections,
)
def _generate_detections_v3(
boxes: tf.Tensor,
scores: tf.Tensor,
pre_nms_score_threshold: float = 0.05,
nms_iou_threshold: float = 0.5,
max_num_detections: int = 100,
refinements: int = 2,
) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]:
"""Generates the detections given the model outputs using NMS for EdgeTPU.
Args:
boxes: A `tf.Tensor` with shape `[batch_size, num_classes, N, 4]` or
`[batch_size, 1, N, 4]`, which box predictions on all feature levels. The
N is the number of total anchors on all levels.
scores: A `tf.Tensor` with shape `[batch_size, num_classes, N]`, which
stacks class probability on all feature levels. The N is the number of
total anchors on all levels. The num_classes is the number of classes
predicted by the model. Note that the class_outputs here is the raw score.
pre_nms_score_threshold: A `float` representing the threshold for deciding
when to remove boxes based on score.
nms_iou_threshold: A `float` representing the threshold for deciding whether
boxes overlap too much with respect to IOU.
max_num_detections: A `scalar` representing maximum number of boxes retained
over all classes.
refinements: Quality parameter for NMS algorithm.
Returns:
nms_boxes: A `float` tf.Tensor of shape [batch_size, max_num_detections, 4]
representing top detected boxes in [y1, x1, y2, x2].
nms_scores: A `float` tf.Tensor of shape [batch_size, max_num_detections]
representing sorted confidence scores for detected boxes. The values are
between [0, 1].
nms_classes: An `int` tf.Tensor of shape [batch_size, max_num_detections]
representing classes for detected boxes.
valid_detections: An `int` tf.Tensor of shape [batch_size] only the top
`valid_detections` boxes are valid detections.
Raises:
ValueError if inputs shapes are not valid.
"""
one = tf.constant(1, dtype=scores.dtype)
with tf.name_scope('generate_detections'):
batch_size, num_box_classes, box_locations, sides = (
boxes.get_shape().as_list()
)
if batch_size is None:
batch_size = tf.shape(boxes)[0]
_, num_classes, locations = scores.get_shape().as_list()
if num_box_classes != 1 and num_box_classes != num_classes:
raise ValueError('Boxes should have either 1 class or same as scores.')
if locations != box_locations:
raise ValueError('Number of locations is different.')
if sides != 4:
raise ValueError('Number of sides is incorrect.')
# Selects pre_nms_score_threshold scores before NMS.
boxes, scores = box_ops.filter_boxes_by_scores(
boxes, scores, min_score_threshold=pre_nms_score_threshold
)
# EdgeTPU-friendly class-wise NMS, -1 for invalid.
indices = edgetpu.non_max_suppression_padded(
boxes,
scores,
max_num_detections,
iou_threshold=nms_iou_threshold,
refinements=refinements,
)
# Gather NMS-ed boxes and scores.
safe_indices = tf.nn.relu(indices) # 0 for invalid
invalid_detections = safe_indices - indices # 1 for invalid, 0 for valid
valid_detections = one - invalid_detections # 0 for invalid, 1 for valid
safe_indices = tf.cast(safe_indices, tf.int32)
boxes = tf.gather(boxes, safe_indices, axis=2, batch_dims=2)
boxes = tf.cast(tf.expand_dims(valid_detections, -1), boxes.dtype) * boxes
scores = valid_detections * tf.gather(
scores, safe_indices, axis=2, batch_dims=2
)
# Compliment with class numbers.
classes = tf.constant(np.arange(num_classes), dtype=scores.dtype)
classes = tf.reshape(classes, [1, num_classes, 1])
classes = tf.tile(classes, [batch_size, 1, max_num_detections])
# Flatten classes, locations. Class = -1 for invalid detection
scores = tf.reshape(scores, [batch_size, num_classes * max_num_detections])
boxes = tf.reshape(boxes, [batch_size, num_classes * max_num_detections, 4])
classes = tf.reshape(
valid_detections * classes - invalid_detections,
[batch_size, num_classes * max_num_detections],
)
# Filter top-k across boxes of all classes
scores, indices = tf.nn.top_k(scores, k=max_num_detections, sorted=True)
boxes = tf.gather(boxes, indices, batch_dims=1, axis=1)
classes = tf.gather(classes, indices, batch_dims=1, axis=1)
invalid_detections = tf.nn.relu(classes) - classes
valid_detections = tf.reduce_sum(one - invalid_detections, axis=1)
return boxes, scores, classes, valid_detections
def _generate_detections_batched(
boxes: tf.Tensor,
scores: tf.Tensor,
pre_nms_score_threshold: float,
nms_iou_threshold: float,
max_num_detections: int,
):
"""Generates detected boxes with scores and classes for one-stage detector.
The function takes output of multi-level ConvNets and anchor boxes and
generates detected boxes. Note that this used batched nms, which is not
supported on TPU currently.
Args:
boxes: A `tf.Tensor` with shape `[batch_size, N, num_classes, 4]` or
`[batch_size, N, 1, 4]`, which box predictions on all feature levels. The
N is the number of total anchors on all levels.
scores: A `tf.Tensor` with shape `[batch_size, N, num_classes]`, which
stacks class probability on all feature levels. The N is the number of
total anchors on all levels. The num_classes is the number of classes
predicted by the model. Note that the class_outputs here is the raw score.
pre_nms_score_threshold: A `float` representing the threshold for deciding
when to remove boxes based on score.
nms_iou_threshold: A `float` representing the threshold for deciding whether
boxes overlap too much with respect to IOU.
max_num_detections: A `scalar` representing maximum number of boxes retained
over all classes.
Returns:
nms_boxes: A `float` tf.Tensor of shape [batch_size, max_num_detections, 4]
representing top detected boxes in [y1, x1, y2, x2].
nms_scores: A `float` tf.Tensor of shape [batch_size, max_num_detections]
representing sorted confidence scores for detected boxes. The values are
between [0, 1].
nms_classes: An `int` tf.Tensor of shape [batch_size, max_num_detections]
representing classes for detected boxes.
valid_detections: An `int` tf.Tensor of shape [batch_size] only the top
`valid_detections` boxes are valid detections.
"""
with tf.name_scope('generate_detections'):
nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections = (
tf.image.combined_non_max_suppression(
boxes,
scores,
max_output_size_per_class=max_num_detections,
max_total_size=max_num_detections,
iou_threshold=nms_iou_threshold,
score_threshold=pre_nms_score_threshold,
pad_per_class=False,
clip_boxes=False,
)
)
nmsed_classes = tf.cast(nmsed_classes, tf.int32)
return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections
def _generate_detections_tflite_implements_signature(
config: Dict[str, Any]
) -> str:
"""Returns `experimental_implements` signature for TFLite's custom NMS op.
This signature encodes the arguments to correctly initialize TFLite's custom
post-processing op in the MLIR converter.
For details on `experimental_implements` see here:
https://www.tensorflow.org/api_docs/python/tf/function
Args:
config: A dictionary of configs defining parameters for TFLite NMS op.
Returns:
An `experimental_implements` signature string.
"""
implements_signature = [
'name: "%s"' % 'TFLite_Detection_PostProcess',
'attr { key: "max_detections" value { i: %d } }'
% config['max_detections'],
'attr { key: "max_classes_per_detection" value { i: %d } }'
% config['max_classes_per_detection'],
'attr { key: "detections_per_class" value { i: %d } }'
% config.get('detections_per_class', 5),
'attr { key: "use_regular_nms" value { b: %s } }'
% str(config['use_regular_nms']).lower(),
'attr { key: "nms_score_threshold" value { f: %f } }'
% config['nms_score_threshold'],
'attr { key: "nms_iou_threshold" value { f: %f } }'
% config['nms_iou_threshold'],
'attr { key: "y_scale" value { f: %f } }' % config.get('y_scale', 1.0),
'attr { key: "x_scale" value { f: %f } }' % config.get('x_scale', 1.0),
'attr { key: "h_scale" value { f: %f } }' % config.get('h_scale', 1.0),
'attr { key: "w_scale" value { f: %f } }' % config.get('w_scale', 1.0),
'attr { key: "num_classes" value { i: %d } }' % config['num_classes'],
]
implements_signature = ' '.join(implements_signature)
return implements_signature
def _generate_detections_tflite(
raw_boxes: Mapping[str, tf.Tensor],
raw_scores: Mapping[str, tf.Tensor],
anchor_boxes: Mapping[str, tf.Tensor],
config: Dict[str, Any],
box_coder_weights: Optional[List[float]] = None,
) -> Sequence[Any]:
"""Generate detections for conversion to TFLite.
Mathematically same as class-agnostic NMS, except that the last portion of
the TF graph constitutes a dummy `tf.function` that contains an annotation
for conversion to TFLite's custom NMS op. Using this custom op allows
features like post-training quantization & accelerator support.
NOTE: This function does NOT return a valid output, and is only meant to
generate a SavedModel for TFLite conversion via MLIR. The generated SavedModel
should not be used for inference.
For TFLite op details, see tensorflow/lite/kernels/detection_postprocess.cc
Args:
raw_boxes: A dictionary of tensors for raw boxes. Key is level of features
and value is a tensor denoting a level of boxes with shape [1, H, W, 4 *
num_anchors].
raw_scores: A dictionary of tensors for classes. Key is level of features
and value is a tensor denoting a level of logits with shape [1, H, W,
num_class * num_anchors].
anchor_boxes: A dictionary of tensors for anchor boxes. Key is level of
features and value is a tensor denoting a level of anchors with shape
[num_anchors, 4].
config: A dictionary of configs defining parameters for TFLite NMS op.
box_coder_weights: An optional `list` of 4 positive floats to scale y, x, h,
and w when encoding box coordinates. If set to None, does not perform
scaling. For Faster RCNN, the open-source implementation recommends using
[10.0, 10.0, 5.0, 5.0].
Returns:
A (dummy) tuple of (boxes, scores, classess, num_detections).
Raises:
ValueError: If the last dimension of predicted boxes is not divisible by 4,
or the last dimension of predicted scores is not divisible by number of
anchors per location.
"""
scores, boxes, anchors = [], [], []
levels = list(raw_scores.keys())
min_level = int(min(levels))
max_level = int(max(levels))
batch_size = tf.shape(raw_scores[str(min_level)])[0]
num_anchors_per_locations_times_4 = (
raw_boxes[str(min_level)].get_shape().as_list()[-1]
)
if num_anchors_per_locations_times_4 % 4 != 0:
raise ValueError(
'The last dimension of predicted boxes should be divisible by 4.'
)
num_anchors_per_locations = num_anchors_per_locations_times_4 // 4
num_classes_times_anchors_per_location = (
raw_scores[str(min_level)].get_shape().as_list()[-1]
)
if num_classes_times_anchors_per_location % num_anchors_per_locations != 0:
raise ValueError(
'The last dimension of predicted scores should be divisible by'
f' {num_anchors_per_locations}.'
)
num_classes = (
num_classes_times_anchors_per_location // num_anchors_per_locations
)
config.update({'num_classes': num_classes})
for i in range(min_level, max_level + 1):
scores.append(tf.reshape(raw_scores[str(i)], [batch_size, -1, num_classes]))
boxes.append(tf.reshape(raw_boxes[str(i)], [batch_size, -1, 4]))
anchors.append(tf.reshape(anchor_boxes[str(i)], [-1, 4]))
scores = tf.sigmoid(tf.concat(scores, 1))
boxes = tf.concat(boxes, 1)
anchors = tf.concat(anchors, 0)
ycenter_a = (anchors[..., 0] + anchors[..., 2]) / 2
xcenter_a = (anchors[..., 1] + anchors[..., 3]) / 2
ha = anchors[..., 2] - anchors[..., 0]
wa = anchors[..., 3] - anchors[..., 1]
anchors = tf.stack([ycenter_a, xcenter_a, ha, wa], axis=-1)
if box_coder_weights:
config.update({
'y_scale': box_coder_weights[0],
'x_scale': box_coder_weights[1],
'h_scale': box_coder_weights[2],
'w_scale': box_coder_weights[3],
})
if config.get('normalize_anchor_coordinates', False):
# TFLite's object detection APIs require normalized anchors.
height, width = config['input_image_size']
normalize_factor = tf.constant(
[height, width, height, width], dtype=tf.float32
)
anchors = anchors / normalize_factor
# There is no TF equivalent for TFLite's custom post-processing op.
# So we add an 'empty' composite function here, that is legalized to the
# custom op with MLIR.
# For details, see: tensorflow/compiler/mlir/lite/utils/nms_utils.cc
@tf.function(
experimental_implements=_generate_detections_tflite_implements_signature(
config
)
)
# pylint: disable=g-unused-argument,unused-argument
def dummy_post_processing(input_boxes, input_scores, input_anchors):
boxes = tf.constant(0.0, dtype=tf.float32, name='boxes')
scores = tf.constant(0.0, dtype=tf.float32, name='scores')
classes = tf.constant(0.0, dtype=tf.float32, name='classes')
num_detections = tf.constant(0.0, dtype=tf.float32, name='num_detections')
return boxes, classes, scores, num_detections
if config.get('omit_nms', False):
dummy_classes = tf.constant(0.0, dtype=tf.float32, name='classes')
dummy_num_detections = tf.constant(
0.0, dtype=tf.float32, name='num_detections')
return boxes, dummy_classes, scores, dummy_num_detections
return dummy_post_processing(boxes, scores, anchors)
@tf_keras.utils.register_keras_serializable(package='Vision')
class DetectionGenerator(tf_keras.layers.Layer):
"""Generates the final detected boxes with scores and classes."""
def __init__(
self,
apply_nms: bool = True,
pre_nms_top_k: int = 5000,
pre_nms_score_threshold: float = 0.05,
nms_iou_threshold: float = 0.5,
max_num_detections: int = 100,
nms_version: str = 'v2',
use_cpu_nms: bool = False,
soft_nms_sigma: Optional[float] = None,
use_sigmoid_probability: bool = False,
**kwargs,
):
"""Initializes a detection generator.
Args:
apply_nms: A `bool` of whether or not apply non maximum suppression. If
False, the decoded boxes and their scores are returned.
pre_nms_top_k: An `int` of the number of top scores proposals to be kept
before applying NMS.
pre_nms_score_threshold: A `float` of the score threshold to apply before
applying NMS. Proposals whose scores are below this threshold are
thrown away.
nms_iou_threshold: A `float` in [0, 1], the NMS IoU threshold.
max_num_detections: An `int` of the final number of total detections to
generate.
nms_version: A string of `batched`, `v1` or `v2` specifies NMS version.
use_cpu_nms: A `bool` of whether or not enforce NMS to run on CPU.
soft_nms_sigma: A `float` representing the sigma parameter for Soft NMS.
When soft_nms_sigma=0.0, we fall back to standard NMS.
use_sigmoid_probability: A `bool`, if true, use sigmoid to get
probability, otherwise use softmax.
**kwargs: Additional keyword arguments passed to Layer.
"""
self._config_dict = {
'apply_nms': apply_nms,
'pre_nms_top_k': pre_nms_top_k,
'pre_nms_score_threshold': pre_nms_score_threshold,
'nms_iou_threshold': nms_iou_threshold,
'max_num_detections': max_num_detections,
'nms_version': nms_version,
'use_cpu_nms': use_cpu_nms,
'soft_nms_sigma': soft_nms_sigma,
'use_sigmoid_probability': use_sigmoid_probability,
}
super(DetectionGenerator, self).__init__(**kwargs)
def __call__(
self,
raw_boxes: tf.Tensor,
raw_scores: tf.Tensor,
anchor_boxes: tf.Tensor,
image_shape: tf.Tensor,
regression_weights: Optional[List[float]] = None,
bbox_per_class: bool = True,
):
"""Generates final detections.
Args:
raw_boxes: A `tf.Tensor` of shape of `[batch_size, K, num_classes * 4]`
representing the class-specific box coordinates relative to anchors.
raw_scores: A `tf.Tensor` of shape of `[batch_size, K, num_classes]`
representing the class logits before applying score activiation.
anchor_boxes: A `tf.Tensor` of shape of `[batch_size, K, 4]` representing
the corresponding anchor boxes w.r.t `box_outputs`.
image_shape: A `tf.Tensor` of shape of `[batch_size, 2]` storing the image
height and width w.r.t. the scaled image, i.e. the same image space as
`box_outputs` and `anchor_boxes`.
regression_weights: A list of four float numbers to scale coordinates.
bbox_per_class: A `bool`. If True, perform per-class box regression.
Returns:
If `apply_nms` = True, the return is a dictionary with keys:
`detection_boxes`: A `float` tf.Tensor of shape
[batch, max_num_detections, 4] representing top detected boxes in
[y1, x1, y2, x2].
`detection_scores`: A `float` `tf.Tensor` of shape
[batch, max_num_detections] representing sorted confidence scores for
detected boxes. The values are between [0, 1].
`detection_classes`: An `int` tf.Tensor of shape
[batch, max_num_detections] representing classes for detected boxes.
`num_detections`: An `int` tf.Tensor of shape [batch] only the first
`num_detections` boxes are valid detections