-
Notifications
You must be signed in to change notification settings - Fork 45.6k
/
Copy pathretinanet_input.py
453 lines (400 loc) · 18.4 KB
/
retinanet_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data parser and processing for RetinaNet.
Parse image and ground-truths in a dataset to training targets and package them
into (image, labels) tuple for RetinaNet.
"""
from typing import Optional, List
from absl import logging
import tensorflow as tf, tf_keras
from official.vision.configs import common as cfg
from official.vision.dataloaders import parser
from official.vision.dataloaders import utils
from official.vision.ops import anchor
from official.vision.ops import augment
from official.vision.ops import box_ops
from official.vision.ops import preprocess_ops
class Parser(parser.Parser):
"""Parser to parse an image and its annotations into a dictionary of tensors."""
def __init__(self,
output_size,
min_level: Optional[int] = None,
max_level,
num_scales: Optional[int] = None,
aspect_ratios: Optional[List[float]] = None,
anchor_size: Optional[float] = None,
match_threshold=0.5,
unmatched_threshold=0.5,
box_coder_weights=None,
aug_type=None,
aug_rand_hflip=False,
aug_rand_jpeg: Optional[cfg.RandJpegQuality] = None,
aug_scale_min=1.0,
aug_scale_max=1.0,
use_autoaugment=False,
autoaugment_policy_name='v0',
skip_crowd_during_training=True,
max_num_instances=100,
dtype='bfloat16',
resize_first: Optional[bool] = None,
mode=None,
pad=True,
keep_aspect_ratio=True):
"""Initializes parameters for parsing annotations in the dataset.
If one provides `input_anchor` when calling `_parse_eval_data()` and
`_parse_train_data()`, the `min_level`, `num_scales`, `aspect_ratios`, and
`anchor_size` can be `None`.
Args:
output_size: `Tensor` or `list` for [height, width] of output image. The
output_size should be divided by the largest feature stride 2^max_level.
min_level: `int` number of minimum level of the output feature pyramid.
Can be `None` if `input_anchor` is provided in `_parse_*_data()`.
max_level: `int` number of maximum level of the output feature pyramid.
num_scales: `int` number representing intermediate scales added on each
level. For instances, num_scales=2 adds one additional intermediate
anchor scales [2^0, 2^0.5] on each level. Can be `None` if
`input_anchor` is provided in `_parse_*_data()`.
aspect_ratios: `list` of float numbers representing the aspect ratio
anchors added on each level. The number indicates the ratio of width to
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
on each scale level. Can be `None` if `input_anchor` is provided in
`_parse_*_data()`.
anchor_size: `float` number representing the scale of size of the base
anchor to the feature stride 2^level. Can be `None` if `input_anchor` is
provided in `_parse_*_data()`.
match_threshold: `float` number between 0 and 1 representing the
lower-bound threshold to assign positive labels for anchors. An anchor
with a score over the threshold is labeled positive.
unmatched_threshold: `float` number between 0 and 1 representing the
upper-bound threshold to assign negative labels for anchors. An anchor
with a score below the threshold is labeled negative.
box_coder_weights: Optional `list` of 4 positive floats to scale y, x, h,
and w when encoding box coordinates. If set to None, does not perform
scaling. For Faster RCNN, the open-source implementation recommends
using [10.0, 10.0, 5.0, 5.0].
aug_type: An optional Augmentation object to choose from AutoAugment and
RandAugment.
aug_rand_hflip: `bool`, if True, augment training with random horizontal
flip.
aug_rand_jpeg: if not None, apply random JPEG quality change augmentation.
aug_scale_min: `float`, the minimum scale applied to `output_size` for
data augmentation during training.
aug_scale_max: `float`, the maximum scale applied to `output_size` for
data augmentation during training.
use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy
during training.
autoaugment_policy_name: `string` that specifies the name of the
AutoAugment policy that will be used during training.
skip_crowd_during_training: `bool`, if True, skip annotations labeled with
`is_crowd` equals to 1.
max_num_instances: `int` number of maximum number of instances in an
image. The groundtruth data will be padded to `max_num_instances`.
dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
resize_first: Optional `bool`, if True, resize the image before the
augmentations; computationally more efficient.
mode: a ModeKeys. Specifies if this is training, evaluation, prediction or
prediction with ground-truths in the outputs.
pad: A bool indicating whether to pad the input image to make it
size a factor of 2**max_level. The padded size will be the smallest
rectangle, such that each dimension is the smallest multiple of
2**max_level which is larger than the desired output size. For example,
if desired output size = (320, 320) and max_level = 7, the output padded
size = (384, 384). This is necessary when using FPN as it assumes each
lower feature map is 2x size of its higher neighbor. Without padding,
such relationship may be invalidated. The backbone may produce 5x5 and
2x2 consecutive feature maps, which does not work with FPN.
keep_aspect_ratio: `bool`, if True, keep the aspect ratio when resizing.
"""
self._mode = mode
self._max_num_instances = max_num_instances
self._skip_crowd_during_training = skip_crowd_during_training
# Anchor.
self._output_size = output_size
self._min_level = min_level
self._max_level = max_level
self._num_scales = num_scales
self._aspect_ratios = aspect_ratios
self._anchor_size = anchor_size
self._match_threshold = match_threshold
self._unmatched_threshold = unmatched_threshold
self._box_coder_weights = box_coder_weights
# Data augmentation.
self._aug_rand_hflip = aug_rand_hflip
self._aug_rand_jpeg = aug_rand_jpeg
self._aug_scale_min = aug_scale_min
self._aug_scale_max = aug_scale_max
# Data augmentation with AutoAugment or RandAugment.
self._augmenter = None
if aug_type is not None:
if aug_type.type == 'autoaug':
logging.info('Using AutoAugment.')
self._augmenter = augment.AutoAugment(
augmentation_name=aug_type.autoaug.augmentation_name,
cutout_const=aug_type.autoaug.cutout_const,
translate_const=aug_type.autoaug.translate_const)
elif aug_type.type == 'randaug':
logging.info('Using RandAugment.')
self._augmenter = augment.RandAugment.build_for_detection(
num_layers=aug_type.randaug.num_layers,
magnitude=aug_type.randaug.magnitude,
cutout_const=aug_type.randaug.cutout_const,
translate_const=aug_type.randaug.translate_const,
prob_to_apply=aug_type.randaug.prob_to_apply,
exclude_ops=aug_type.randaug.exclude_ops)
elif aug_type.type == 'ssd_random_crop':
logging.info('Using SSD Random Crop.')
self._augmenter = augment.SSDRandomCrop(
params=aug_type.ssd_random_crop.ssd_random_crop_params,
aspect_ratio_range=aug_type.ssd_random_crop.aspect_ratio_range,
area_range=aug_type.ssd_random_crop.area_range,
)
else:
raise ValueError(f'Augmentation policy {aug_type.type} not supported.')
# Deprecated. Data Augmentation with AutoAugment.
self._use_autoaugment = use_autoaugment
self._autoaugment_policy_name = autoaugment_policy_name
# Data type.
self._dtype = dtype
# Input pipeline optimization.
self._resize_first = resize_first
# Whether to pad image to make its size the smallest factor of 2*max_level.
# This is needed when using FPN decoder.
self._pad = pad
self._keep_aspect_ratio = keep_aspect_ratio
def _resize_and_crop_image_and_boxes(self, image, boxes, pad=True):
"""Resizes and crops image and boxes, optionally with padding."""
# Resizes and crops image.
padded_size = None
if pad:
padded_size = preprocess_ops.compute_padded_size(self._output_size,
2**self._max_level)
image, image_info = preprocess_ops.resize_and_crop_image(
image,
self._output_size,
padded_size=padded_size,
aug_scale_min=self._aug_scale_min,
aug_scale_max=self._aug_scale_max,
keep_aspect_ratio=self._keep_aspect_ratio,
)
# Resizes and crops boxes.
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
image_info[1, :], offset)
return image, boxes, image_info
def _parse_train_data(self, data, anchor_labeler=None, input_anchor=None):
"""Parses data for training and evaluation."""
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
# If not empty, `attributes` is a dict of (name, ground_truth) pairs.
# `ground_truth` of attributes is assumed in shape [N, attribute_size].
attributes = data.get('groundtruth_attributes', {})
is_crowds = data['groundtruth_is_crowd']
# Skips annotations with `is_crowd` = True.
if self._skip_crowd_during_training:
num_groundtruths = tf.shape(input=classes)[0]
with tf.control_dependencies([num_groundtruths, is_crowds]):
indices = tf.cond(
pred=tf.greater(tf.size(input=is_crowds), 0),
true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
false_fn=lambda: tf.cast(tf.range(num_groundtruths), tf.int64))
classes = tf.gather(classes, indices)
boxes = tf.gather(boxes, indices)
for k, v in attributes.items():
attributes[k] = tf.gather(v, indices)
# Gets original image.
image = data['image']
image_size = tf.cast(tf.shape(image)[0:2], tf.float32)
less_output_pixels = (
self._output_size[0] * self._output_size[1]
) < image_size[0] * image_size[1]
# Resizing first can reduce augmentation computation if the original image
# has more pixels than the desired output image.
# There might be a smarter threshold to compute less_output_pixels as
# we keep the padding to the very end, i.e., a resized image likely has less
# pixels than self._output_size[0] * self._output_size[1].
resize_first = self._resize_first and less_output_pixels
if resize_first:
image, boxes, image_info = self._resize_and_crop_image_and_boxes(
image, boxes, pad=False
)
image = tf.cast(image, dtype=tf.uint8)
# Apply autoaug or randaug.
if self._augmenter is not None:
image, boxes = self._augmenter.distort_with_boxes(image, boxes)
# Apply random jpeg quality change.
if self._aug_rand_jpeg is not None:
image = preprocess_ops.random_jpeg_quality(
image,
min_quality=self._aug_rand_jpeg.min_quality,
max_quality=self._aug_rand_jpeg.max_quality,
prob_to_apply=self._aug_rand_jpeg.prob_to_apply,
)
image_shape = tf.shape(input=image)[0:2]
# Normalizes image with mean and std pixel values.
image = preprocess_ops.normalize_image(image)
# Flips image randomly during training.
if self._aug_rand_hflip:
image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes)
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_ops.denormalize_boxes(boxes, image_shape)
if self._pad:
padded_size = preprocess_ops.compute_padded_size(
self._output_size, 2**self._max_level
)
else:
padded_size = self._output_size
if not resize_first:
image, boxes, image_info = (
self._resize_and_crop_image_and_boxes(image, boxes, pad=self._pad)
)
image = tf.image.pad_to_bounding_box(
image, 0, 0, padded_size[0], padded_size[1]
)
image = tf.ensure_shape(image, padded_size + [3])
image_height, image_width, _ = image.get_shape().as_list()
# Filters out ground-truth boxes that are all zeros.
indices = box_ops.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
for k, v in attributes.items():
attributes[k] = tf.gather(v, indices)
# Assigns anchors.
if input_anchor is None:
input_anchor = anchor.build_anchor_generator(
min_level=self._min_level,
max_level=self._max_level,
num_scales=self._num_scales,
aspect_ratios=self._aspect_ratios,
anchor_size=self._anchor_size,
)
anchor_boxes = input_anchor(image_size=(image_height, image_width))
if anchor_labeler is None:
anchor_labeler = anchor.AnchorLabeler(
match_threshold=self._match_threshold,
unmatched_threshold=self._unmatched_threshold,
box_coder_weights=self._box_coder_weights,
)
(cls_targets, box_targets, att_targets, cls_weights,
box_weights) = anchor_labeler.label_anchors(
anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)
# Casts input image to desired data type.
image = tf.cast(image, dtype=self._dtype)
# Packs labels for model_fn outputs.
labels = {
'cls_targets': cls_targets,
'box_targets': box_targets,
'anchor_boxes': anchor_boxes,
'cls_weights': cls_weights,
'box_weights': box_weights,
'image_info': image_info,
}
if att_targets:
labels['attribute_targets'] = att_targets
return image, labels
def _parse_eval_data(self, data, anchor_labeler=None, input_anchor=None):
"""Parses data for training and evaluation."""
classes = data['groundtruth_classes']
boxes = data['groundtruth_boxes']
# If not empty, `attributes` is a dict of (name, ground_truth) pairs.
# `ground_truth` of attributes is assumed in shape [N, attribute_size].
attributes = data.get('groundtruth_attributes', {})
# Gets original image and its size.
image = data['image']
image_shape = tf.shape(input=image)[0:2]
# Normalizes image with mean and std pixel values.
image = preprocess_ops.normalize_image(image)
# Converts boxes from normalized coordinates to pixel coordinates.
boxes = box_ops.denormalize_boxes(boxes, image_shape)
# Resizes and crops image.
if self._pad:
padded_size = preprocess_ops.compute_padded_size(
self._output_size, 2**self._max_level
)
else:
padded_size = self._output_size
image, image_info = preprocess_ops.resize_and_crop_image(
image,
self._output_size,
padded_size=padded_size,
aug_scale_min=1.0,
aug_scale_max=1.0,
keep_aspect_ratio=self._keep_aspect_ratio,
)
image = tf.ensure_shape(image, padded_size + [3])
image_height, image_width, _ = image.get_shape().as_list()
# Resizes and crops boxes.
image_scale = image_info[2, :]
offset = image_info[3, :]
boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
image_info[1, :], offset)
# Filters out ground-truth boxes that are all zeros.
indices = box_ops.get_non_empty_box_indices(boxes)
boxes = tf.gather(boxes, indices)
classes = tf.gather(classes, indices)
for k, v in attributes.items():
attributes[k] = tf.gather(v, indices)
# Assigns anchors.
if input_anchor is None:
input_anchor = anchor.build_anchor_generator(
min_level=self._min_level,
max_level=self._max_level,
num_scales=self._num_scales,
aspect_ratios=self._aspect_ratios,
anchor_size=self._anchor_size,
)
anchor_boxes = input_anchor(image_size=(image_height, image_width))
if anchor_labeler is None:
anchor_labeler = anchor.AnchorLabeler(
match_threshold=self._match_threshold,
unmatched_threshold=self._unmatched_threshold,
box_coder_weights=self._box_coder_weights,
)
(cls_targets, box_targets, att_targets, cls_weights,
box_weights) = anchor_labeler.label_anchors(
anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)
# Casts input image to desired data type.
image = tf.cast(image, dtype=self._dtype)
# Sets up ground-truth data for evaluation.
groundtruths = {
'source_id': data['source_id'],
'height': data['height'],
'width': data['width'],
'num_detections': tf.shape(data['groundtruth_classes']),
'image_info': image_info,
'boxes': box_ops.denormalize_boxes(
data['groundtruth_boxes'], image_shape),
'classes': data['groundtruth_classes'],
'areas': data['groundtruth_area'],
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
}
if 'groundtruth_attributes' in data:
groundtruths['attributes'] = data['groundtruth_attributes']
groundtruths['source_id'] = utils.process_source_id(
groundtruths['source_id'])
groundtruths = utils.pad_groundtruths_to_fixed_size(
groundtruths, self._max_num_instances)
# Packs labels for model_fn outputs.
labels = {
'cls_targets': cls_targets,
'box_targets': box_targets,
'anchor_boxes': anchor_boxes,
'cls_weights': cls_weights,
'box_weights': box_weights,
'image_info': image_info,
'groundtruths': groundtruths,
}
if att_targets:
labels['attribute_targets'] = att_targets
return image, labels