forked from ngessert/isic2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
564 lines (539 loc) · 28.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models as tv_models
from torch.utils.data import DataLoader
from torchsummary import summary
import numpy as np
from scipy import io
import threading
import pickle
from pathlib import Path
import math
import os
import sys
from glob import glob
import re
import gc
import importlib
import time
import sklearn.preprocessing
import utils
from sklearn.utils import class_weight
import psutil
import models
# add configuration file
# Dictionary for model configuration
mdlParams = {}
# Import machine config
pc_cfg = importlib.import_module('pc_cfgs.'+sys.argv[1])
mdlParams.update(pc_cfg.mdlParams)
# Import model config
model_cfg = importlib.import_module('cfgs.'+sys.argv[2])
mdlParams_model = model_cfg.init(mdlParams)
mdlParams.update(mdlParams_model)
# Indicate training
mdlParams['trainSetState'] = 'train'
# Path name from filename
mdlParams['saveDirBase'] = mdlParams['saveDir'] + sys.argv[2]
# Set visible devices
if 'gpu' in sys.argv[3]:
mdlParams['numGPUs']= [[int(s) for s in re.findall(r'\d+',sys.argv[3])][-1]]
cuda_str = ""
for i in range(len(mdlParams['numGPUs'])):
cuda_str = cuda_str + str(mdlParams['numGPUs'][i])
if i is not len(mdlParams['numGPUs'])-1:
cuda_str = cuda_str + ","
print("Devices to use:",cuda_str)
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_str
# Specify val set to train for
if len(sys.argv) > 4:
mdlParams['cv_subset'] = [int(s) for s in re.findall(r'\d+',sys.argv[4])]
print("Training validation sets",mdlParams['cv_subset'])
# Check if there is a validation set, if not, evaluate train error instead
if 'valIndCV' in mdlParams or 'valInd' in mdlParams:
eval_set = 'valInd'
print("Evaluating on validation set during training.")
else:
eval_set = 'trainInd'
print("No validation set, evaluating on training set during training.")
# Check if there were previous ones that have alreary bin learned
prevFile = Path(mdlParams['saveDirBase'] + '/CV.pkl')
#print(prevFile)
if prevFile.exists():
print("Part of CV already done")
with open(mdlParams['saveDirBase'] + '/CV.pkl', 'rb') as f:
allData = pickle.load(f)
else:
allData = {}
allData['f1Best'] = {}
allData['sensBest'] = {}
allData['specBest'] = {}
allData['accBest'] = {}
allData['waccBest'] = {}
allData['aucBest'] = {}
allData['convergeTime'] = {}
allData['bestPred'] = {}
allData['targets'] = {}
# Take care of CV
if mdlParams.get('cv_subset',None) is not None:
cv_set = mdlParams['cv_subset']
else:
cv_set = range(mdlParams['numCV'])
for cv in cv_set:
# Check if this fold was already trained
already_trained = False
if 'valIndCV' in mdlParams:
mdlParams['saveDir'] = mdlParams['saveDirBase'] + '/CVSet' + str(cv)
if os.path.isdir(mdlParams['saveDirBase']):
if os.path.isdir(mdlParams['saveDir']):
all_max_iter = []
for name in os.listdir(mdlParams['saveDir']):
int_list = [int(s) for s in re.findall(r'\d+',name)]
if len(int_list) > 0:
all_max_iter.append(int_list[-1])
#if '-' + str(mdlParams['training_steps'])+ '.pt' in name:
# print("Fold %d already fully trained"%(cv))
# already_trained = True
all_max_iter = np.array(all_max_iter)
if len(all_max_iter) > 0 and np.max(all_max_iter) >= mdlParams['training_steps']:
print("Fold %d already fully trained with %d iterations"%(cv,np.max(all_max_iter)))
already_trained = True
if already_trained:
continue
print("CV set",cv)
# Reset model graph
importlib.reload(models)
#importlib.reload(torchvision)
# Collect model variables
modelVars = {}
#print("here")
modelVars['device'] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(modelVars['device'])
# Def current CV set
mdlParams['trainInd'] = mdlParams['trainIndCV'][cv]
if 'valIndCV' in mdlParams:
mdlParams['valInd'] = mdlParams['valIndCV'][cv]
# Def current path for saving stuff
if 'valIndCV' in mdlParams:
mdlParams['saveDir'] = mdlParams['saveDirBase'] + '/CVSet' + str(cv)
else:
mdlParams['saveDir'] = mdlParams['saveDirBase']
# Create basepath if it doesnt exist yet
if not os.path.isdir(mdlParams['saveDirBase']):
os.mkdir(mdlParams['saveDirBase'])
# Check if there is something to load
load_old = 0
if os.path.isdir(mdlParams['saveDir']):
# Check if a checkpoint is in there
if len([name for name in os.listdir(mdlParams['saveDir'])]) > 0:
load_old = 1
print("Loading old model")
else:
# Delete whatever is in there (nothing happens)
filelist = [os.remove(mdlParams['saveDir'] +'/'+f) for f in os.listdir(mdlParams['saveDir'])]
else:
os.mkdir(mdlParams['saveDir'])
# Save training progress in here
save_dict = {}
save_dict['acc'] = []
save_dict['loss'] = []
save_dict['wacc'] = []
save_dict['auc'] = []
save_dict['sens'] = []
save_dict['spec'] = []
save_dict['f1'] = []
save_dict['step_num'] = []
if mdlParams['print_trainerr']:
save_dict_train = {}
save_dict_train['acc'] = []
save_dict_train['loss'] = []
save_dict_train['wacc'] = []
save_dict_train['auc'] = []
save_dict_train['sens'] = []
save_dict_train['spec'] = []
save_dict_train['f1'] = []
save_dict_train['step_num'] = []
# Potentially calculate setMean to subtract
if mdlParams['subtract_set_mean'] == 1:
mdlParams['setMean'] = np.mean(mdlParams['images_means'][mdlParams['trainInd'],:],(0))
print("Set Mean",mdlParams['setMean'])
# balance classes
if mdlParams['balance_classes'] < 3 or mdlParams['balance_classes'] == 7 or mdlParams['balance_classes'] == 11:
class_weights = class_weight.compute_class_weight('balanced',np.unique(np.argmax(mdlParams['labels_array'][mdlParams['trainInd'],:],1)),np.argmax(mdlParams['labels_array'][mdlParams['trainInd'],:],1))
print("Current class weights",class_weights)
class_weights = class_weights*mdlParams['extra_fac']
print("Current class weights with extra",class_weights)
elif mdlParams['balance_classes'] == 3 or mdlParams['balance_classes'] == 4:
# Split training set by classes
not_one_hot = np.argmax(mdlParams['labels_array'],1)
mdlParams['class_indices'] = []
for i in range(mdlParams['numClasses']):
mdlParams['class_indices'].append(np.where(not_one_hot==i)[0])
# Kick out non-trainind indices
mdlParams['class_indices'][i] = np.setdiff1d(mdlParams['class_indices'][i],mdlParams['valInd'])
#print("Class",i,mdlParams['class_indices'][i].shape,np.min(mdlParams['class_indices'][i]),np.max(mdlParams['class_indices'][i]),np.sum(mdlParams['labels_array'][np.int64(mdlParams['class_indices'][i]),:],0))
elif mdlParams['balance_classes'] == 5 or mdlParams['balance_classes'] == 6 or mdlParams['balance_classes'] == 13:
# Other class balancing loss
class_weights = 1.0/np.mean(mdlParams['labels_array'][mdlParams['trainInd'],:],axis=0)
print("Current class weights",class_weights)
if isinstance(mdlParams['extra_fac'], float):
class_weights = np.power(class_weights,mdlParams['extra_fac'])
else:
class_weights = class_weights*mdlParams['extra_fac']
print("Current class weights with extra",class_weights)
elif mdlParams['balance_classes'] == 9:
# Only use official indicies for calculation
print("Balance 9")
indices_ham = mdlParams['trainInd'][mdlParams['trainInd'] < 25331]
if mdlParams['numClasses'] == 9:
class_weights_ = 1.0/np.mean(mdlParams['labels_array'][indices_ham,:8],axis=0)
#print("class before",class_weights_)
class_weights = np.zeros([mdlParams['numClasses']])
class_weights[:8] = class_weights_
class_weights[-1] = np.max(class_weights_)
else:
class_weights = 1.0/np.mean(mdlParams['labels_array'][indices_ham,:],axis=0)
print("Current class weights",class_weights)
if isinstance(mdlParams['extra_fac'], float):
class_weights = np.power(class_weights,mdlParams['extra_fac'])
else:
class_weights = class_weights*mdlParams['extra_fac']
print("Current class weights with extra",class_weights)
# Meta scaler
if mdlParams.get('meta_features',None) is not None and mdlParams['scale_features']:
mdlParams['feature_scaler_meta'] = sklearn.preprocessing.StandardScaler().fit(mdlParams['meta_array'][mdlParams['trainInd'],:])
print("scaler mean",mdlParams['feature_scaler_meta'].mean_,"var",mdlParams['feature_scaler_meta'].var_)
# Set up dataloaders
num_workers = psutil.cpu_count(logical=False)
# For train
dataset_train = utils.ISICDataset(mdlParams, 'trainInd')
# For val
dataset_val = utils.ISICDataset(mdlParams, 'valInd')
if mdlParams['multiCropEval'] > 0:
modelVars['dataloader_valInd'] = DataLoader(dataset_val, batch_size=mdlParams['multiCropEval'], shuffle=False, num_workers=num_workers, pin_memory=True)
else:
modelVars['dataloader_valInd'] = DataLoader(dataset_val, batch_size=mdlParams['batchSize'], shuffle=False, num_workers=num_workers, pin_memory=True)
if mdlParams['balance_classes'] == 12 or mdlParams['balance_classes'] == 13:
#print(np.argmax(mdlParams['labels_array'][mdlParams['trainInd'],:],1).size(0))
strat_sampler = utils.StratifiedSampler(mdlParams)
modelVars['dataloader_trainInd'] = DataLoader(dataset_train, batch_size=mdlParams['batchSize'], sampler=strat_sampler, num_workers=num_workers, pin_memory=True)
else:
modelVars['dataloader_trainInd'] = DataLoader(dataset_train, batch_size=mdlParams['batchSize'], shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True)
#print("Setdiff",np.setdiff1d(mdlParams['trainInd'],mdlParams['trainInd']))
# Define model
modelVars['model'] = models.getModel(mdlParams)()
# Load trained model
if mdlParams.get('meta_features',None) is not None:
# Find best checkpoint
files = glob(mdlParams['model_load_path'] + '/CVSet' + str(cv) + '/*')
global_steps = np.zeros([len(files)])
#print("files",files)
for i in range(len(files)):
# Use meta files to find the highest index
if 'best' not in files[i]:
continue
if 'checkpoint' not in files[i]:
continue
# Extract global step
nums = [int(s) for s in re.findall(r'\d+',files[i])]
global_steps[i] = nums[-1]
# Create path with maximum global step found
chkPath = mdlParams['model_load_path'] + '/CVSet' + str(cv) + '/checkpoint_best-' + str(int(np.max(global_steps))) + '.pt'
print("Restoring lesion-trained CNN for meta data training: ",chkPath)
# Load
state = torch.load(chkPath)
# Initialize model
curr_model_dict = modelVars['model'].state_dict()
for name, param in state['state_dict'].items():
#print(name,param.shape)
if isinstance(param, nn.Parameter):
# backwards compatibility for serialized parameters
param = param.data
if curr_model_dict[name].shape == param.shape:
curr_model_dict[name].copy_(param)
else:
print("not restored",name,param.shape)
#modelVars['model'].load_state_dict(state['state_dict'])
# Original input size
#if 'Dense' not in mdlParams['model_type']:
# print("Original input size",modelVars['model'].input_size)
#print(modelVars['model'])
if 'Dense' in mdlParams['model_type']:
if mdlParams['input_size'][0] != 224:
modelVars['model'] = utils.modify_densenet_avg_pool(modelVars['model'])
#print(modelVars['model'])
num_ftrs = modelVars['model'].classifier.in_features
modelVars['model'].classifier = nn.Linear(num_ftrs, mdlParams['numClasses'])
#print(modelVars['model'])
elif 'dpn' in mdlParams['model_type']:
num_ftrs = modelVars['model'].classifier.in_channels
modelVars['model'].classifier = nn.Conv2d(num_ftrs,mdlParams['numClasses'],[1,1])
#modelVars['model'].add_module('real_classifier',nn.Linear(num_ftrs, mdlParams['numClasses']))
#print(modelVars['model'])
elif 'efficient' in mdlParams['model_type']:
# Do nothing, output is prepared
num_ftrs = modelVars['model']._fc.in_features
modelVars['model']._fc = nn.Linear(num_ftrs, mdlParams['numClasses'])
elif 'wsl' in mdlParams['model_type']:
num_ftrs = modelVars['model'].fc.in_features
modelVars['model'].fc = nn.Linear(num_ftrs, mdlParams['numClasses'])
else:
num_ftrs = modelVars['model'].last_linear.in_features
modelVars['model'].last_linear = nn.Linear(num_ftrs, mdlParams['numClasses'])
# Take care of meta case
if mdlParams.get('meta_features',None) is not None:
# freeze cnn first
if mdlParams['freeze_cnn']:
# deactivate all
for param in modelVars['model'].parameters():
param.requires_grad = False
if 'efficient' in mdlParams['model_type']:
# Activate fc
for param in modelVars['model']._fc.parameters():
param.requires_grad = True
elif 'wsl' in mdlParams['model_type']:
# Activate fc
for param in modelVars['model'].fc.parameters():
param.requires_grad = True
else:
# Activate fc
for param in modelVars['model'].last_linear.parameters():
param.requires_grad = True
else:
# mark cnn parameters
for param in modelVars['model'].parameters():
param.is_cnn_param = True
# unmark fc
for param in modelVars['model']._fc.parameters():
param.is_cnn_param = False
# modify model
modelVars['model'] = models.modify_meta(mdlParams,modelVars['model'])
# Mark new parameters
for param in modelVars['model'].parameters():
if not hasattr(param, 'is_cnn_param'):
param.is_cnn_param = False
# multi gpu support
if len(mdlParams['numGPUs']) > 1:
modelVars['model'] = nn.DataParallel(modelVars['model'])
modelVars['model'] = modelVars['model'].cuda()
#summary(modelVars['model'], modelVars['model'].input_size)# (mdlParams['input_size'][2], mdlParams['input_size'][0], mdlParams['input_size'][1]))
# Loss, with class weighting
if mdlParams.get('focal_loss',False):
modelVars['criterion'] = utils.FocalLoss(alpha=class_weights.tolist())
elif mdlParams['balance_classes'] == 3 or mdlParams['balance_classes'] == 0 or mdlParams['balance_classes'] == 12:
modelVars['criterion'] = nn.CrossEntropyLoss()
elif mdlParams['balance_classes'] == 8:
modelVars['criterion'] = nn.CrossEntropyLoss(reduce=False)
elif mdlParams['balance_classes'] == 6 or mdlParams['balance_classes'] == 7:
modelVars['criterion'] = nn.CrossEntropyLoss(weight=torch.cuda.FloatTensor(class_weights.astype(np.float32)),reduce=False)
elif mdlParams['balance_classes'] == 10:
modelVars['criterion'] = utils.FocalLoss(mdlParams['numClasses'])
elif mdlParams['balance_classes'] == 11:
modelVars['criterion'] = utils.FocalLoss(mdlParams['numClasses'],alpha=torch.cuda.FloatTensor(class_weights.astype(np.float32)))
else:
modelVars['criterion'] = nn.CrossEntropyLoss(weight=torch.cuda.FloatTensor(class_weights.astype(np.float32)))
if mdlParams.get('meta_features',None) is not None:
if mdlParams['freeze_cnn']:
modelVars['optimizer'] = optim.Adam(filter(lambda p: p.requires_grad, modelVars['model'].parameters()), lr=mdlParams['learning_rate_meta'])
# sanity check
for param in filter(lambda p: p.requires_grad, modelVars['model'].parameters()):
print(param.name,param.shape)
else:
modelVars['optimizer'] = optim.Adam([
{'params': filter(lambda p: not p.is_cnn_param, modelVars['model'].parameters()), 'lr': mdlParams['learning_rate_meta']},
{'params': filter(lambda p: p.is_cnn_param, modelVars['model'].parameters()), 'lr': mdlParams['learning_rate']}
], lr=mdlParams['learning_rate'])
else:
modelVars['optimizer'] = optim.Adam(modelVars['model'].parameters(), lr=mdlParams['learning_rate'])
# Decay LR by a factor of 0.1 every 7 epochs
modelVars['scheduler'] = lr_scheduler.StepLR(modelVars['optimizer'], step_size=mdlParams['lowerLRAfter'], gamma=1/np.float32(mdlParams['LRstep']))
# Define softmax
modelVars['softmax'] = nn.Softmax(dim=1)
# Set up training
# loading from checkpoint
if load_old:
# Find last, not last best checkpoint
files = glob(mdlParams['saveDir']+'/*')
global_steps = np.zeros([len(files)])
for i in range(len(files)):
# Use meta files to find the highest index
if 'best' in files[i]:
continue
if 'checkpoint-' not in files[i]:
continue
# Extract global step
nums = [int(s) for s in re.findall(r'\d+',files[i])]
global_steps[i] = nums[-1]
# Create path with maximum global step found
chkPath = mdlParams['saveDir'] + '/checkpoint-' + str(int(np.max(global_steps))) + '.pt'
print("Restoring: ",chkPath)
# Load
state = torch.load(chkPath)
# Initialize model and optimizer
modelVars['model'].load_state_dict(state['state_dict'])
modelVars['optimizer'].load_state_dict(state['optimizer'])
start_epoch = state['epoch']+1
mdlParams['valBest'] = state.get('valBest',1000)
mdlParams['lastBestInd'] = state.get('lastBestInd',int(np.max(global_steps)))
else:
start_epoch = 1
mdlParams['lastBestInd'] = -1
# Track metrics for saving best model
mdlParams['valBest'] = 1000
# Num batches
numBatchesTrain = int(math.floor(len(mdlParams['trainInd'])/mdlParams['batchSize']))
print("Train batches",numBatchesTrain)
# Run training
start_time = time.time()
print("Start training...")
for step in range(start_epoch, mdlParams['training_steps']+1):
# One Epoch of training
if step >= mdlParams['lowerLRat']-mdlParams['lowerLRAfter']:
modelVars['scheduler'].step()
modelVars['model'].train()
for j, (inputs, labels, indices) in enumerate(modelVars['dataloader_trainInd']):
#print(indices)
#t_load = time.time()
# Run optimization
if mdlParams.get('meta_features',None) is not None:
inputs[0] = inputs[0].cuda()
inputs[1] = inputs[1].cuda()
else:
inputs = inputs.cuda()
#print(inputs.shape)
labels = labels.cuda()
# zero the parameter gradients
modelVars['optimizer'].zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(True):
if mdlParams.get('aux_classifier',False):
outputs, outputs_aux = modelVars['model'](inputs)
loss1 = modelVars['criterion'](outputs, labels)
labels_aux = labels.repeat(mdlParams['multiCropTrain'])
loss2 = modelVars['criterion'](outputs_aux, labels_aux)
loss = loss1 + mdlParams['aux_classifier_loss_fac']*loss2
else:
#print("load",time.time()-t_load)
#t_fwd = time.time()
outputs = modelVars['model'](inputs)
#print("forward",time.time()-t_fwd)
#t_bwd = time.time()
loss = modelVars['criterion'](outputs, labels)
# Perhaps adjust weighting of the loss by the specific index
if mdlParams['balance_classes'] == 6 or mdlParams['balance_classes'] == 7 or mdlParams['balance_classes'] == 8:
#loss = loss.cpu()
indices = indices.numpy()
loss = loss*torch.cuda.FloatTensor(mdlParams['loss_fac_per_example'][indices].astype(np.float32))
loss = torch.mean(loss)
#loss = loss.cuda()
# backward + optimize only if in training phase
loss.backward()
modelVars['optimizer'].step()
#print("backward",time.time()-t_bwd)
if step % mdlParams['display_step'] == 0 or step == 1:
# Calculate evaluation metrics
if mdlParams['classification']:
# Adjust model state
modelVars['model'].eval()
# Get metrics
loss, accuracy, sensitivity, specificity, conf_matrix, f1, auc, waccuracy, predictions, targets, _ = utils.getErrClassification_mgpu(mdlParams, eval_set, modelVars)
# Save in mat
save_dict['loss'].append(loss)
save_dict['acc'].append(accuracy)
save_dict['wacc'].append(waccuracy)
save_dict['auc'].append(auc)
save_dict['sens'].append(sensitivity)
save_dict['spec'].append(specificity)
save_dict['f1'].append(f1)
save_dict['step_num'].append(step)
if os.path.isfile(mdlParams['saveDir'] + '/progression_'+eval_set+'.mat'):
os.remove(mdlParams['saveDir'] + '/progression_'+eval_set+'.mat')
io.savemat(mdlParams['saveDir'] + '/progression_'+eval_set+'.mat',save_dict)
eval_metric = -np.mean(waccuracy)
# Check if we have a new best value
if eval_metric < mdlParams['valBest']:
mdlParams['valBest'] = eval_metric
if mdlParams['classification']:
allData['f1Best'][cv] = f1
allData['sensBest'][cv] = sensitivity
allData['specBest'][cv] = specificity
allData['accBest'][cv] = accuracy
allData['waccBest'][cv] = waccuracy
allData['aucBest'][cv] = auc
oldBestInd = mdlParams['lastBestInd']
mdlParams['lastBestInd'] = step
allData['convergeTime'][cv] = step
# Save best predictions
allData['bestPred'][cv] = predictions
allData['targets'][cv] = targets
# Write to File
with open(mdlParams['saveDirBase'] + '/CV.pkl', 'wb') as f:
pickle.dump(allData, f, pickle.HIGHEST_PROTOCOL)
# Delte previously best model
if os.path.isfile(mdlParams['saveDir'] + '/checkpoint_best-' + str(oldBestInd) + '.pt'):
os.remove(mdlParams['saveDir'] + '/checkpoint_best-' + str(oldBestInd) + '.pt')
# Save currently best model
state = {'epoch': step, 'valBest': mdlParams['valBest'], 'lastBestInd': mdlParams['lastBestInd'], 'state_dict': modelVars['model'].state_dict(),'optimizer': modelVars['optimizer'].state_dict()}
torch.save(state, mdlParams['saveDir'] + '/checkpoint_best-' + str(step) + '.pt')
# If its not better, just save it delete the last checkpoint if it is not current best one
# Save current model
state = {'epoch': step, 'valBest': mdlParams['valBest'], 'lastBestInd': mdlParams['lastBestInd'], 'state_dict': modelVars['model'].state_dict(),'optimizer': modelVars['optimizer'].state_dict()}
torch.save(state, mdlParams['saveDir'] + '/checkpoint-' + str(step) + '.pt')
# Delete last one
if step == mdlParams['display_step']:
lastInd = 1
else:
lastInd = step-mdlParams['display_step']
if os.path.isfile(mdlParams['saveDir'] + '/checkpoint-' + str(lastInd) + '.pt'):
os.remove(mdlParams['saveDir'] + '/checkpoint-' + str(lastInd) + '.pt')
# Duration so far
duration = time.time() - start_time
# Print
if mdlParams['classification']:
print("\n")
print("Config:",sys.argv[2])
print('Fold: %d Epoch: %d/%d (%d h %d m %d s)' % (cv,step,mdlParams['training_steps'], int(duration/3600), int(np.mod(duration,3600)/60), int(np.mod(np.mod(duration,3600),60))) + time.strftime("%d.%m.-%H:%M:%S", time.localtime()))
print("Loss on ",eval_set,"set: ",loss," Accuracy: ",accuracy," F1: ",f1," (best WACC: ",-mdlParams['valBest']," at Epoch ",mdlParams['lastBestInd'],")")
print("Auc",auc,"Mean AUC",np.mean(auc))
print("Per Class Acc",waccuracy,"Weighted Accuracy",np.mean(waccuracy))
print("Sensitivity: ",sensitivity,"Specificity",specificity)
print("Confusion Matrix")
print(conf_matrix)
# Potentially peek at test error
if mdlParams['peak_at_testerr']:
loss, accuracy, sensitivity, specificity, _, f1, _, _, _, _, _ = utils.getErrClassification_mgpu(mdlParams, 'testInd', modelVars)
print("Test loss: ",loss," Accuracy: ",accuracy," F1: ",f1)
print("Sensitivity: ",sensitivity,"Specificity",specificity)
# Potentially print train err
if mdlParams['print_trainerr'] and 'train' not in eval_set:
loss, accuracy, sensitivity, specificity, conf_matrix, f1, auc, waccuracy, predictions, targets, _ = utils.getErrClassification_mgpu(mdlParams, 'trainInd', modelVars)
# Save in mat
save_dict_train['loss'].append(loss)
save_dict_train['acc'].append(accuracy)
save_dict_train['wacc'].append(waccuracy)
save_dict_train['auc'].append(auc)
save_dict_train['sens'].append(sensitivity)
save_dict_train['spec'].append(specificity)
save_dict_train['f1'].append(f1)
save_dict_train['step_num'].append(step)
if os.path.isfile(mdlParams['saveDir'] + '/progression_trainInd.mat'):
os.remove(mdlParams['saveDir'] + '/progression_trainInd.mat')
scipy.io.savemat(mdlParams['saveDir'] + '/progression_trainInd.mat',save_dict_train)
print("Train loss: ",loss," Accuracy: ",accuracy," F1: ",f1)
print("Sensitivity: ",sensitivity,"Specificity",specificity)
# Free everything in modelvars
modelVars.clear()
# After CV Training: print CV results and save them
print("Best F1:",allData['f1Best'][cv])
print("Best Sens:",allData['sensBest'][cv])
print("Best Spec:",allData['specBest'][cv])
print("Best Acc:",allData['accBest'][cv])
print("Best Per Class Accuracy:",allData['waccBest'][cv])
print("Best Weighted Acc:",np.mean(allData['waccBest'][cv]))
print("Best AUC:",allData['aucBest'][cv])
print("Best Mean AUC:",np.mean(allData['aucBest'][cv]))
print("Convergence Steps:",allData['convergeTime'][cv])