-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRuleGenerator.py
executable file
·66 lines (56 loc) · 2.17 KB
/
RuleGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
""" Takes in transactions and generates rules """
from apyori import apriori
import pandas as pd
import csv
import config
from staticLists.devices import devices
from staticLists.vendors import vendors
class RuleGenerator():
def __init__(self, transactions):
self.transactions = transactions
self.banners = list(set([x[0] for x in transactions]))
def getLabeledRule(self, relationRecord):
'''
This function generates a rule against a transaction.
:return: A dictionary containing rule
'''
items = set(relationRecord)
rule = {}
for item in items:
if item in self.banners:
rule["banner"] = item
elif item in devices:
rule["deviceType"] = item
elif item in vendors:
rule["vendor"] = item
else:
rule["product"] = item
if "banner" not in rule.keys():
return None
return rule
def generate(self):
'''
This function generates rules from transactions.
:return: A list of dictionaries containing rules
'''
rules = []
results = list(apriori(self.transactions,
min_support=config.MIN_SUPPORT,
min_confidence=config.MIN_CONFIDENCE))
Support = []
Confidence = []
Items = []
for RelationRecord in results:
for ordered_stat in RelationRecord.ordered_statistics:
itemsAsSet = self.getLabeledRule(RelationRecord.items)
if itemsAsSet is not None and itemsAsSet not in Items:
Items.append(itemsAsSet)
Support.append(RelationRecord.support)
Confidence.append(ordered_stat.confidence)
# represent Items, Support, and Confidence as dataframes
df = pd.DataFrame(columns=('Items', 'Support', 'Confidence'))
df['Items'], df['Support'], df['Confidence'] = Items, Support, Confidence
# generates a rules.csv file containing the inferred rules
rules = df['Items']
df.to_csv(config.RULES_FILE)
return Items