-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathunique_paths.cpp
87 lines (53 loc) · 1.79 KB
/
unique_paths.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time.
The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
Constraints:
1 <= m, n <= 100
It's guaranteed that the answer will be less than or equal to 2 * 10 ^ 9.
// Recursive (Memoized)
class Solution {
public:
vector <vector<int>> dp;
int solve(int i, int j, int m, int n) {
if (i == m && j == n) return 1;
if (i > m || j > n) return 0;
if (dp[i][j] != -1) return dp[i][j];
int down = 0, right = 0;
if (i < m) down = solve(i + 1, j, m, n);
if (j < n) right = solve(i, j + 1, m, n);
return dp[i][j] = down + right;
}
int uniquePaths(int m, int n) {
dp.resize(m + 1, vector <int> (n + 1, -1));
return solve(0, 0, m - 1, n - 1); // 0, 0 -> m - 1, n - 1
}
};
// Dp (Accepted)
class Solution {
public:
int uniquePaths(int m, int n) {
int dp[m][n];
if(m==0 || n==0) return 0;
for(int i=0;i<m;i++) dp[i][0]=1;
for(int j=0;j<n;j++) dp[0][j]=1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};