-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
74 lines (63 loc) · 4.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
import os
import scipy.misc
import numpy as np
from model import pix2pix
import tensorflow as tf
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset_name', dest='dataset_name', default='facades', help='name of the dataset')
parser.add_argument('--phase', dest='phase', default='train', help='train, test, blind')
parser.add_argument('--epoch', dest='epoch', type=int, default=10, help='# of epoch')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='# images in batch')
parser.add_argument('--train_size', dest='train_size', type=int, default=1e8, help='# images used to train')
parser.add_argument('--load_size', dest='load_size', type=int, default=286, help='scale images to this size')
parser.add_argument('--fine_rot',dest='fine_rot',type=bool, default=True,help='if True :rotate train image to random angles')
parser.add_argument('--fine_size', dest='fine_size', type=int, default=256, help='then crop to this size')
parser.add_argument('--ngf', dest='ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--ndf', dest='ndf', type=int, default=64, help='# of discri filters in first conv layer')
parser.add_argument('--input_nc', dest='input_nc', type=int, default=3, help='# of input image channels')
parser.add_argument('--output_nc', dest='output_nc', type=int, default=3, help='# of output image channels')
parser.add_argument('--niter', dest='niter', type=int, default=200, help='# of iter at starting learning rate')
parser.add_argument('--lr', dest='lr', type=float, default=0.002, help='initial learning rate for adam')
parser.add_argument('--beta1', dest='beta1', type=float, default=0.5, help='momentum term of adam')
parser.add_argument('--flip', dest='flip', type=bool, default=True, help='if flip the images for data argumentation')
parser.add_argument('--which_direction', dest='which_direction', default='AtoB', help='AtoB or BtoA')
#the two below work only when phase==blind
parser.add_argument('--bw_out',dest='bw_out',type=bool,default=True,help='whether output iamge convert to binary image')
parser.add_argument('--bw_thread',dest='bw_thread',type=int,default=80,help='the threadshold of binaray')
parser.add_argument('--save_epoch_freq', dest='save_epoch_freq', type=int, default=50, help='save a model every save_epoch_freq epochs (does not overwrite previously saved models)')
parser.add_argument('--save_latest_freq', dest='save_latest_freq', type=int, default=5000, help='save the latest model every latest_freq sgd iterations (overwrites the previous latest model)')
parser.add_argument('--print_freq', dest='print_freq', type=int, default=50, help='print the debug information every print_freq iterations')
parser.add_argument('--continue_train', dest='continue_train', type=bool, default=False, help='if continue training, load the latest model: 1: true, 0: false')
parser.add_argument('--serial_batches', dest='serial_batches', type=bool, default=False, help='f 1, takes images in order to make batches, otherwise takes them randomly')
parser.add_argument('--serial_batch_iter', dest='serial_batch_iter', type=bool, default=True, help='iter into serial image list')
parser.add_argument('--checkpoint_dir', dest='checkpoint_dir', default='./checkpoint', help='models are saved here')
parser.add_argument('--sample_dir', dest='sample_dir', default='./sample', help='sample are saved here')
parser.add_argument('--test_dir', dest='test_dir', default='./test', help='test sample are saved here')
parser.add_argument('--blind_dir', dest='blind_dir', default='./blind', help='blind test sample are saved here')
parser.add_argument('--L1_lambda', dest='L1_lambda', type=float, default=100.0, help='weight on L1 term in objective')
args = parser.parse_args()
def main(_):
AA='AA'
print(AA=='AA')
if not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir)
if not os.path.exists(args.sample_dir):
os.makedirs(args.sample_dir)
if not os.path.exists(args.test_dir):
os.makedirs(args.test_dir)
if not os.path.exists(args.blind_dir):
os.mkdir(args.blind_dir)
with tf.Session() as sess:
model = pix2pix(sess, image_size=args.fine_size, batch_size=args.batch_size,
output_size=args.fine_size, dataset_name=args.dataset_name,
checkpoint_dir=args.checkpoint_dir, sample_dir=args.sample_dir,
input_c_dim=args.input_nc,output_c_dim=args.output_nc)
if args.phase == 'train':
model.train(args)
elif args.phase == 'test':
model.test(args)
else:
model.blind(args)
if __name__ == '__main__':
tf.app.run()