-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathcomputeRigidAttachment.py
162 lines (137 loc) · 5.55 KB
/
computeRigidAttachment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import matplotlib.pyplot as plt
import numpy as np
import os
import pickle
from skimage.transform import resize
import sys
import trimesh
import tqdm
import yaml
from pathlib import Path
basePath = (Path(__file__).parent).resolve()
import PoseGenerator
import SSD
def modifyCaches(cacheFile, nonRigidParts):
with open(cacheFile, 'rb') as f:
cacheData = pickle.load(f)
cacheData['rigidCharts'] = cacheData['vCharts'].copy()
rigidParts = [x for x in np.unique(cacheData['vCharts']) if x not in nonRigidParts]
print("Non-Rigid Parts: ", nonRigidParts)
print("Rigid Parts: ", rigidParts)
for part in rigidParts:
cacheData['vCharts'][cacheData['vCharts'] == part] = -1
for part in nonRigidParts:
cacheData['rigidCharts'][cacheData['rigidCharts'] == part] = -1
with open(cacheFile, 'wb') as f:
pickle.dump(cacheData, f)
print('vCharts: ', dict(zip(*np.unique(cacheData['vCharts'], return_counts=True))))
print('rigidCharts: ', dict(zip(*np.unique(cacheData['rigidCharts'], return_counts=True))))
return rigidParts
def rankVertices(usedIndex,rigidIndex,meshes,neutral):
# Compute the transformation of the rigid component
rigidNeutral = neutral[rigidIndex]
rigidMesh = meshes[:,rigidIndex]
transformations = [SSD.rigidRegister(rigidNeutral,m) for m in rigidMesh]
# Compute the mesh positions given the transofrmations
usedNeutral = neutral[usedIndex]
usedMesh = meshes[:,usedIndex]
deformed = np.asarray([usedNeutral.dot(R)+t for R,t in transformations]).astype('float32')
diff = np.sqrt(np.sum(np.square(usedMesh-deformed),-1))
error = np.mean(diff,0)
return error
def computeRigidComponents(charts,meshes,neutral):
rigid = []
nonrigid = []
for i in range(np.max(charts)+1):
mask = charts==i
neutralPart = neutral[mask]
meshesPart = meshes[:,mask]
transformations = [SSD.rigidRegister(neutralPart,m) for m in meshesPart]
deformed = np.asarray([neutralPart.dot(R)+t for R,t in transformations])
diff = np.sum(np.square(meshesPart-deformed),-1)
error = np.mean(diff)
if error < 1e-6:
rigid.append(i)
else:
nonrigid.append(i)
return rigid,nonrigid
def main():
parser = argparse.ArgumentParser(description='Train deformation approximation with CNN')
parser.add_argument('--configFile', type=str, required=True)
parser.add_argument('--outputFile', type=str, required=True)
parser.add_argument('--nonRigidParts', nargs='+', type=int)
args = parser.parse_args()
with open(args.configFile) as file:
config = yaml.load(file)
with open(os.path.join(basePath,config['data_params']['cache_file']),'rb') as file:
data = pickle.load(file)
neutral = data['neutral']
active = data['active']
charts = data['vCharts']
neutral = neutral[active]
if 'rigidCharts' in data:
print('Using rigid data from cache file')
nonrigid = list(set([i for i in charts if i != -1]))
rigidPartsIdx = list(set([i for i in data['rigidCharts'] if i != -1]))
hasRigid = True
else:
hasRigid = False
# Create the data pipeline
print('Loading control file '+config['data_params']['control_file'])
pg = PoseGenerator.PoseGeneratorRemote(os.path.join(basePath,config['data_params']['control_file']),os.path.join(basePath,config['data_params']['geo_file']),'localhost',9001)
pg.connect()
pg.setActiveVertices(active)
# Generate some training data
n = 250
meshes = np.zeros((n,len(neutral),3),dtype='float32')
try:
for i in tqdm.trange(n):
pg.setRandomPose()
m = pg.getVertices()[active]
meshes[i] = m
finally:
pg.close()
# modify cache with information on which parts are rigid
if not hasRigid:
if args.nonRigidParts is None:
print('Computing rigid components')
rigid,nonrigid = computeRigidComponents(charts,meshes,neutral)
else:
nonrigid = args.nonRigidParts
rigidPartsIdx = modifyCaches(os.path.join(basePath,config['data_params']['cache_file']), nonrigid)
with open(os.path.join(basePath,config['data_params']['cache_file']),'rb') as file:
data = pickle.load(file)
neutral = data['neutral']
active = data['active']
neutral = neutral[active].astype('float32')
neutralMean = np.mean(neutral,0)
faces = data['faces']
charts = data['vCharts']
if 'sample_file' in config['data_params']:
sampleFile = os.path.join(basePath,config['data_params']['sample_file'])
else:
sampleFile = None
# Identify the used vertices
usedV = np.arange(len(neutral))[charts>-1]
# Identify the rigid vertices
rigidCharts = data['rigidCharts']
rigidMax = np.max(rigidCharts)+1
rigidParts = []
for i in range(rigidMax):
if np.sum(rigidCharts==i):
rigidParts.append(np.arange(len(neutral))[rigidCharts==i])
print('Computing attachment for ' + str(len(rigidParts)) + ' parts')
# Rank the vertices
errors = [rankVertices(usedV,rp,meshes,neutral) for rp in rigidParts]
for i in range(len(errors)):
print('part '+str(rigidPartsIdx[i]))
print('\tmin(errors): '+str(np.min(errors[i])))
print('\tmax(errors): '+str(np.max(errors[i])))
print('\terrors<0.1: '+str(np.sum(errors[i]<0.1)))
# Save the results
output = dict(parts=rigidParts,rank=errors)
with open(args.outputFile,'wb') as file:
pickle.dump(output,file)
if __name__=='__main__':
main()