You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
After having updated the RAP-variables to only include the variables and instances that I need for my study, the create-data.R failed (it seems like there are errors with all variables). Here is the code and error message:
> readr::read_csv(here::here("data-raw/rap-variables.csv")) %>%
+ dplyr::pull(id) %>%
+ ukbAid::create_csv_from_database(username = "FieLangmann")
Rows: 984 Columns: 2
── Column specification ──────────────────────────────────────────────────────────
Delimiter: ","
chr (2): id, title
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
ℹ Started extracting the variables and converting to CSV.
! This function runs for quite a while, at least 5 minutes or more. Please be patient to let it finish.
Traceback (most recent call last):
File "/usr/local/lib/python3.8/dist-packages/dxpy/scripts/dx.py", line 2858, in run_one
dxexecution.wait_on_done()
File "/usr/local/lib/python3.8/dist-packages/dxpy/bindings/dxjob.py", line 283, in wait_on_done
raise DXJobFailureError(err_msg)
dxpy.exceptions.DXJobFailureError: Job has failed because of AppError: Failed to export data: An error occurred while calling o3625.csv.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.errors.QueryExecutionErrors$.jobAbortedError(QueryExecutionErrors.scala:496)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:261)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:186)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:113)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:111)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:125)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:97)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:97)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:93)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:481)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:82)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:481)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:457)
at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:93)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:78)
at org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:115)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:848)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:382)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:355)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:239)
at org.apache.spark.sql.DataFrameWriter.csv(DataFrameWriter.scala:839)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Thread.java:750)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: ResultStage 45 (csv at NativeMethodAccessorImpl.java:0) has failed the maximum allowable number of times: 4. Most recent failure reason:
org.apache.spark.shuffle.MetadataFetchFailedException: Missing an output location for shuffle 6 partition 2
at org.apache.spark.MapOutputTracker$.validateStatus(MapOutputTracker.scala:1623)
at org.apache.spark.MapOutputTracker$.$anonfun$convertMapStatuses$10(MapOutputTracker.scala:1570)
at org.apache.spark.MapOutputTracker$.$anonfun$convertMapStatuses$10$adapted(MapOutputTracker.scala:1569)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at org.apache.spark.MapOutputTracker$.convertMapSta...DD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1491)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2548)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2493)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2492)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2492)
at org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:1933)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2733)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2678)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2667)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:1022)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2214)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:228)
... 42 more Please check job logs and error files for more details.
dxpy.utils.resolver.ResolutionError: Unable to resolve "data-FieLangmann-lega-2024-05-31.csv" to a data object or folder name in '/'
✔ Finished saving to CSV. Check "/mnt/project/users/FieLangmann" or the project folder on the RAP to see that it was created.
[1] "job-GkGyY20JqFgQkvKBf1YV7jkj" NA
Warning message:
In system(table_exporter_command, intern = TRUE) :
running command 'dx run app-table-exporter --brief --wait -y -idataset_or_cohort_or_dashboard=record-GXZ2k40JbxZx7xYGF66y45Yq -ifield_names="eid" -ifield_names="p31" -ifield_names="p34" -ifield_names="p52" -ifield_names="p54_i0" -ifield_names="p190" -ifield_names="p191" -ifield_names="p709_i0" -ifield_names="p738_i0" -ifield_names="p2306_i0" -ifield_names="p2443_i0" -ifield_names="p2453_i0" -ifield_names="p2734_i0" -ifield_names="p2784_i0" -ifield_names="p2814_i0" -ifield_names="p3456_i0" -ifield_names="p3829_i0" -ifield_names="p3839_i0" -ifield_names="p3849_i0" -ifield_names="p6138_i0" -ifield_names="p6141_i0" -ifield_names="p6150_i0" -ifield_names="p20002_i0" -ifield_names="p20077" -ifield_names="p20107_i0" -ifield_names="p20110_i0" -ifield_names="p20111_i0" -ifield_names="p20116_i0" -ifield_names="p20117_i0" -ifield_names="p21000_i0" -ifield_names="p21022" -ifield_names="p22040_i0" -ifield_names="p22189" -ifield_names="p23104_i0" -ifield_names="p26000_i0" -ifield_names="p26000_i1" - [... truncated]
The text was updated successfully, but these errors were encountered:
After having updated the RAP-variables to only include the variables and instances that I need for my study, the create-data.R failed (it seems like there are errors with all variables). Here is the code and error message:
The text was updated successfully, but these errors were encountered: