-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathutilities.R
executable file
·1544 lines (1296 loc) · 36.5 KB
/
utilities.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#' Get matrix from tibble
#'
#' @keywords internal
#' @noRd
#'
#'
#' @importFrom magrittr set_rownames
#' @importFrom rlang quo_is_null
#'
#' @param tbl A tibble
#' @param rownames The column name of the input tibble that will become the rownames of the output matrix
#' @param do_check A boolean
#'
#' @return A matrix
#'
#' @examples
#'
#'
#' tibble(.feature = "CD3G", count=1) |> as_matrix(rownames=.feature)
#'
as_data_frame <- function(tbl,
rownames = NULL,
do_check = TRUE) {
# Fix NOTEs
. = NULL
rownames = enquo(rownames)
tbl %>%
as.data.frame() |>
# Deal with rownames column if present
ifelse_pipe(
!quo_is_null(rownames),
~ .x |>
magrittr::set_rownames(tbl |> pull(!!rownames)) |>
select(-1)
)
}
my_stop = function() {
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance.
Please read the documentation of this function for more information.
")
}
#' This is a generalisation of ifelse that accepts an object and return an objects
#'
#' @keywords internal
#' @noRd
#'
#'
#'
#' @importFrom purrr as_mapper
#'
#' @param .x A tibble
#' @param .p A boolean
#' @param .f1 A function
#' @param .f2 A function
#'
#' @return A tibble
ifelse_pipe = function(.x, .p, .f1, .f2 = NULL) {
switch(.p %>% not() %>% sum(1),
as_mapper(.f1)(.x),
if (.f2 %>% is.null %>% not())
as_mapper(.f2)(.x)
else
.x)
}
#' This is a generalisation of ifelse that acceots an object and return an objects
#'
#' @keywords internal
#' @noRd
#'
#'
#'
#'
#' @param .x A tibble
#' @param .p1 A boolean
#' @param .p2 ELSE IF condition
#' @param .f1 A function
#' @param .f2 A function
#' @param .f3 A function
#'
#' @return A tibble
ifelse2_pipe = function(.x, .p1, .p2, .f1, .f2, .f3 = NULL) {
# Nested switch
switch(# First condition
.p1 %>% not() %>% sum(1),
# First outcome
as_mapper(.f1)(.x),
switch(
# Second condition
.p2 %>% not() %>% sum(1),
# Second outcome
as_mapper(.f2)(.x),
# Third outcome - if there is not .f3 just return the original data frame
if (.f3 %>% is.null %>% not())
as_mapper(.f3)(.x)
else
.x
))
}
#' Check whether a numeric vector has been log transformed
#'
#' @keywords internal
#' @noRd
#'
#' @param x A numeric vector
#' @param .abundance A character name of the transcript/gene abundance column
#'
#' @return NA
error_if_log_transformed <- function(x, .abundance) {
.abundance = enquo(.abundance)
if (x %>% nrow() %>% gt(0))
if (x %>% summarise(m = !!.abundance %>% max) %>% pull(m) < 50)
stop(
"tidybulk says: The input was log transformed, this algorithm requires raw (un-scaled) read counts"
)
}
#' Check whether there are duplicated genes/transcripts
#'
#' @keywords internal
#' @noRd
#'
#'
#'
#' @import tibble
#' @importFrom utils capture.output
#'
#'
#' @param .data A tibble of read counts
#' @param .sample A character name of the sample column
#' @param .transcript A character name of the transcript/gene column
#' @param .abundance A character name of the read count column
#'
#' @return A tbl
error_if_duplicated_genes <- function(.data,
.sample = `sample`,
.transcript = `transcript`,
.abundance = `read count`) {
.sample = enquo(.sample)
.transcript = enquo(.transcript)
.abundance = enquo(.abundance)
duplicates <-
distinct( .data, !!.sample,!!.transcript,!!.abundance) %>%
count(!!.sample,!!.transcript) %>%
filter(n > 1) %>%
arrange(n %>% desc())
if (duplicates %>% nrow() > 0) {
message("Those are the duplicated genes")
duplicates %>% capture.output() %>% paste0(collapse = "\n") %>% message()
stop(
"tidybulk says: Your dataset include duplicated sample/gene pairs. Please, remove redundancies before proceeding."
)
}
.data
}
#' Check whether there are NA counts
#'
#' @keywords internal
#' @noRd
#'
#'
#'
#' @import tibble
#'
#' @param .data A tibble of read counts
#' @param .abundance A character name of the read count column
#'
#' @return A tbl
#'
error_if_counts_is_na = function(.data, .abundance) {
.abundance = enquo(.abundance)
# Do the check
if (.data %>% filter(!!.abundance %>% is.na) %>% nrow() %>% gt(0))
stop("tidybulk says: You have NA values in your counts")
# If all good return original data frame
.data
}
#' Check whether there are NA counts
#'
#' @keywords internal
#' @noRd
#'
#'
#'
#' @import tibble
#' @importFrom purrr map
#'
#'
#' @param .data A tibble of read counts
#' @param list_input A list
#' @param expected_type A character string
#'
#' @return A tbl
#'
error_if_wrong_input = function(.data, list_input, expected_type) {
# Do the check
if (
list_input %>%
map(~ .x %>% class() %>% `[` (1)) %>%
unlist %>%
equals(expected_type) %>%
not()
)
stop("tidybulk says: You have passed the wrong argument to the function. Please check again.")
# If all good return original data frame
.data
}
#' .formula parser
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom stats terms
#'
#' @param fm a formula
#' @return A character vector
#'
#'
parse_formula <- function(fm) {
if (attr(terms(fm), "response") == 1)
stop("tidybulk says: The .formula must be of the kind \"~ covariates\" ")
else
as.character(attr(terms(fm), "variables"))[-1]
}
#' Formula parser with survival
#'
#' @keywords internal
#' @noRd
#'
#' @param fm A formula
#'
#' @return A character vector
#'
#'
parse_formula_survival <- function(fm) {
pars = as.character(attr(terms(fm), "variables"))[-1]
response = NULL
if(attr(terms(fm), "response") == 1) response = pars[1]
covariates = ifelse(attr(terms(fm), "response") == 1, pars[-1], pars)
list(
response = response,
covariates = covariates
)
}
#' Scale design matrix
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom stats setNames
#' @importFrom stats cov
#'
#' @param df A tibble
#' @param .formula a formula
#'
#' @return A tibble
#'
#'
scale_design = function(df, .formula) {
df %>%
setNames(c("sample_idx", "(Intercept)", parse_formula(.formula))) %>%
gather(cov, value,-sample_idx) %>%
group_by(cov) %>%
mutate(value = ifelse(
!grepl("Intercept", cov) &
length(union(c(0, 1), value)) != 2,
scale(value),
value
)) %>%
ungroup() %>%
spread(cov, value) %>%
arrange(as.integer(sample_idx)) %>%
select(`(Intercept)`, any_of(parse_formula(.formula)))
}
get_tt_columns = function(.data){
if(
.data %>% attr("internals") %>% is.list() &&
"tt_columns" %in% names(.data %>% attr("internals"))
) #& "internals" %in% (.data %>% attr("internals") %>% names()))
.data %>% attr("internals") %$% tt_columns
else NULL
}
#' @importFrom rlang quo_is_symbol
#'
add_tt_columns = function(.data,
.sample,
.transcript,
.abundance,
.abundance_scaled = NULL,
.abundance_adjusted = NULL){
# Make col names
.sample = enquo(.sample)
.transcript = enquo(.transcript)
.abundance = enquo(.abundance)
.abundance_scaled = enquo(.abundance_scaled)
.abundance_adjusted = enquo(.abundance_adjusted)
# Add tt_columns
.data %>% attach_to_internals(
list(
.sample = .sample,
.transcript = .transcript,
.abundance = .abundance
) %>%
# If .abundance_scaled is not NULL add it to tt_columns
ifelse_pipe(
.abundance_scaled %>% quo_is_symbol,
~ .x %>% c( list(.abundance_scaled = .abundance_scaled))
) %>%
ifelse_pipe(
.abundance_adjusted %>% quo_is_symbol,
~ .x %>% c( list(.abundance_adjusted = .abundance_adjusted))
),
"tt_columns"
)
}
initialise_tt_internals = function(.data){
.data %>%
ifelse_pipe(
"internals" %in% ((.) %>% attributes %>% names) %>% not(),
~ .x %>% add_attr(list(), "internals")
)
}
reattach_internals = function(.data, .data_internals_from = NULL){
if(.data_internals_from %>% is.null)
.data_internals_from = .data
.data %>% add_attr(.data_internals_from %>% attr("internals"), "internals")
}
attach_to_internals = function(.data, .object, .name){
internals =
.data %>%
initialise_tt_internals() %>%
attr("internals")
# Add tt_bolumns
internals[[.name]] = .object
.data %>% add_attr(internals, "internals")
}
drop_internals = function(.data){
.data %>% drop_attr("internals")
}
memorise_methods_used = function(.data, .method, object_containing_methods = .data){
# object_containing_methods is used in case for example of test gene rank where the output is a tibble that has lost its attributes
.data %>%
attach_to_internals(
object_containing_methods %>%
attr("internals") %>%
.[["methods_used"]] %>%
c(.method) %>% unique(),
"methods_used"
)
}
#' Add attribute to abject
#'
#' @keywords internal
#' @noRd
#'
#'
#' @param var A tibble
#' @param attribute An object
#' @param name A character name of the attribute
#'
#' @return A tibble with an additional attribute
add_attr = function(var, attribute, name) {
attr(var, name) <- attribute
var
}
#' Drop attribute to abject
#'
#' @keywords internal
#' @noRd
#'
#'
#' @param var A tibble
#' @param name A character name of the attribute
#'
#' @return A tibble with an additional attribute
drop_attr = function(var, name) {
attr(var, name) <- NULL
var
}
#' Remove class to abject
#'
#' @keywords internal
#' @noRd
#'
#'
#' @param var A tibble
#' @param name A character name of the class
#'
#' @return A tibble with an additional attribute
drop_class = function(var, name) {
class(var) <- class(var)[!class(var)%in%name]
var
}
#' From rlang deprecated
#'
#' @keywords internal
#' @noRd
#'
#' @param x An array
#' @param values An array
#' @param before A boolean
#'
#' @return An array
#'
prepend = function (x, values, before = 1)
{
n <- length(x)
stopifnot(before > 0 && before <= n)
if (before == 1) {
c(values, x)
}
else {
c(x[1:(before - 1)], values, x[before:n])
}
}
#' Add class to abject
#'
#' @keywords internal
#' @noRd
#'
#' @param var A tibble
#' @param name A character name of the attribute
#'
#' @return A tibble with an additional attribute
add_class = function(var, name) {
if(!name %in% class(var)) class(var) <- prepend(class(var),name)
var
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#' @importFrom rlang quo_is_symbolic
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#' @param .transcript A character name of the transcript/gene column
#' @param .abundance A character name of the read count column
#'
#' @return A list of column enquo or error
get_sample_transcript_counts = function(.data, .sample, .transcript, .abundance){
if( quo_is_symbolic(.sample) ) .sample = .sample
else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
.sample = get_tt_columns(.data)$.sample
else my_stop()
if( quo_is_symbolic(.transcript) ) .transcript = .transcript
else if(".transcript" %in% (.data %>% get_tt_columns() %>% names))
.transcript = get_tt_columns(.data)$.transcript
else my_stop()
if( quo_is_symbolic(.abundance) ) .abundance = .abundance
else if(".abundance" %in% (.data %>% get_tt_columns() %>% names))
.abundance = get_tt_columns(.data)$.abundance
else my_stop()
list(.sample = .sample, .transcript = .transcript, .abundance = .abundance)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#' @param .abundance A character name of the read count column
#'
#' @return A list of column enquo or error
get_sample_counts = function(.data, .sample, .abundance){
if( .sample %>% quo_is_symbol() ) .sample = .sample
else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
.sample = get_tt_columns(.data)$.sample
else my_stop()
if( .abundance %>% quo_is_symbol() ) .abundance = .abundance
else if(".abundance" %in% (.data %>% get_tt_columns() %>% names))
.abundance = get_tt_columns(.data)$.abundance
else my_stop()
list(.sample = .sample, .abundance = .abundance)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#'
#' @return A list of column enquo or error
get_sample = function(.data, .sample){
if( .sample %>% quo_is_symbol() ) .sample = .sample
else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
.sample = get_tt_columns(.data)$.sample
else my_stop()
list(.sample = .sample)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .transcript A character name of the transcript column
#'
#' @return A list of column enquo or error
get_transcript = function(.data, .transcript){
my_stop = function() {
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance.
Please read the documentation of this function for more information.
")
}
if( .transcript %>% quo_is_symbol() ) .transcript = .transcript
else if(".transcript" %in% (.data %>% get_tt_columns() %>% names))
.transcript = get_tt_columns(.data)$.transcript
else my_stop()
list(.transcript = .transcript)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#' @param .transcript A character name of the transcript/gene column
#'
#' @return A list of column enquo or error
get_sample_transcript = function(.data, .sample, .transcript){
if( .sample %>% quo_is_symbol() ) .sample = .sample
else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
.sample = get_tt_columns(.data)$.sample
else my_stop()
if( .transcript %>% quo_is_symbol() ) .transcript = .transcript
else if(".transcript" %in% (.data %>% get_tt_columns() %>% names))
.transcript = get_tt_columns(.data)$.transcript
else my_stop()
list(.sample = .sample, .transcript = .transcript)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#'
#' @return A list of column enquo or error
get_sample = function(.data, .sample){
if( .sample %>% quo_is_symbol() ) .sample = .sample
else if(".sample" %in% (.data %>% get_tt_columns() %>% names))
.sample = get_tt_columns(.data)$.sample
else my_stop()
list(.sample = .sample)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .element A character name of the sample column
#' @param .feature A character name of the transcript/gene column
#' @param of_samples A boolean
#'
#' @return A list of column enquo or error
#'
get_elements_features = function(.data, .element, .feature, of_samples = TRUE){
# If setted by the user, enquo those
if(
.element %>% quo_is_symbol() &
.feature %>% quo_is_symbol()
)
return(list(
.element = .element,
.feature = .feature
))
# Otherwise check if attribute exists
else {
# If so, take them from the attribute
if(.data %>% get_tt_columns() %>% is.null %>% not())
return(list(
.element = switch(
of_samples %>% not() %>% sum(1),
get_tt_columns(.data)$.sample,
get_tt_columns(.data)$.transcript
),
.feature = switch(
of_samples %>% not() %>% sum(1),
get_tt_columns(.data)$.transcript,
get_tt_columns(.data)$.sample
)
))
# Else through error
else
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance
Please read the documentation of this function for more information.
")
}
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .element A character name of the sample column
#' @param .feature A character name of the transcript/gene column
#' @param .abundance A character name of the read count column
#' @param of_samples A boolean
#'
#' @return A list of column enquo or error
#'
get_elements_features_abundance = function(.data, .element, .feature, .abundance, of_samples = TRUE){
my_stop = function() {
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance
Please read the documentation of this function for more information.
")
}
if( .element %>% quo_is_symbol() ) .element = .element
else if(of_samples & ".sample" %in% (.data %>% get_tt_columns() %>% names))
.element = get_tt_columns(.data)$.sample
else if((!of_samples) & ".transcript" %in% (.data %>% get_tt_columns() %>% names))
.element = get_tt_columns(.data)$.transcript
else my_stop()
if( .feature %>% quo_is_symbol() ) .feature = .feature
else if(of_samples & ".transcript" %in% (.data %>% get_tt_columns() %>% names))
.feature = get_tt_columns(.data)$.transcript
else if((!of_samples) & ".sample" %in% (.data %>% get_tt_columns() %>% names))
.feature = get_tt_columns(.data)$.sample
else my_stop()
if( .abundance %>% quo_is_symbol() ) .abundance = .abundance
else if(".abundance" %in% (.data %>% get_tt_columns() %>% names))
.abundance = get_tt_columns(.data)$.abundance
else my_stop()
list(.element = .element, .feature = .feature, .abundance = .abundance)
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .element A character name of the sample column
#' @param of_samples A boolean
#'
#' @return A list of column enquo or error
get_elements = function(.data, .element, of_samples = TRUE){
# If setted by the user, enquo those
if(
.element %>% quo_is_symbol()
)
return(list(
.element = .element
))
# Otherwise check if attribute exists
else {
# If so, take them from the attribute
if(.data %>% get_tt_columns() %>% is.null %>% not())
return(list(
.element = switch(
of_samples %>% not() %>% sum(1),
get_tt_columns(.data)$.sample,
get_tt_columns(.data)$.transcript
)
))
# Else through error
else
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance.
Please read the documentation of this function for more information.
")
}
}
#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A tibble
#' @param .abundance A character name of the abundance column
#'
#' @return A list of column enquo or error
get_abundance_norm_if_exists = function(.data, .abundance){
# If setted by the user, enquo those
if(
.abundance %>% quo_is_symbol()
)
return(list(
.abundance = .abundance
))
# Otherwise check if attribute exists
else {
# If so, take them from the attribute
if(.data %>% get_tt_columns() %>% is.null %>% not())
return(list(
.abundance = switch(
(".abundance_scaled" %in% (.data %>% get_tt_columns() %>% names) &&
# .data %>% get_tt_columns() %$% .abundance_scaled %>% is.null %>% not() &&
quo_name(.data %>% get_tt_columns() %$% .abundance_scaled) %in% (.data %>% colnames)
) %>% not() %>% sum(1),
get_tt_columns(.data)$.abundance_scaled,
get_tt_columns(.data)$.abundance
)
))
# Else through error
else
stop("
tidybulk says: The function does not know what your sample, transcript and counts columns are.
You might need to specify the arguments .sample, .transcript and/or .abundance.
Please read the documentation of this function for more information.
")
}
}
#' Sub function of remove_redundancy_elements_though_reduced_dimensions
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom stats dist
#' @importFrom utils head
#'
#' @param df A tibble
#'
#'
#' @return A tibble with pairs to drop
select_closest_pairs = function(df) {
couples <- df %>% head(n = 0)
while (df %>% nrow() > 0) {
pair <- df %>%
arrange(dist) %>%
head(n = 1)
couples <- couples %>% bind_rows(pair)
df <- df %>%
filter(
!`sample 1` %in% (pair %>% select(1:2) %>% as.character()) &
!`sample 2` %in% (pair %>% select(1:2) %>% as.character())
)
}
couples
}
#' This function is needed for DE in case the matrix is not rectangular, but includes NA
#'
#' @keywords internal
#' @noRd
#'
#' @param .matrix A matrix
#'
#' @return A matrix
fill_NA_with_row_median = function(.matrix){
if(length(which(rowSums(is.na(.matrix)) > 0)) > 0)
rbind(
.matrix[rowSums(is.na(.matrix)) == 0,],
apply(.matrix[rowSums(is.na(.matrix)) > 0,], 1, FUN = function(.x) { .x[is.na(.x)] = median(.x, na.rm = TRUE); .x}) %>% t
)
else
.matrix
}
#' get_x_y_annotation_columns
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom magrittr equals
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment))
#' @param .horizontal The name of the column horizontally presented in the heatmap
#' @param .vertical The name of the column vertically presented in the heatmap
#' @param .abundance The name of the transcript/gene abundance column
#' @param .abundance_scaled The name of the transcript/gene scaled abundance column
#'
#' @description This function recognise what are the sample-wise columns and transcrip-wise columns
#'
#' @return A list
#'
get_x_y_annotation_columns = function(.data, .horizontal, .vertical, .abundance, .abundance_scaled){
# Comply with CRAN NOTES
. = NULL
# Make col names
.horizontal = enquo(.horizontal)
.vertical = enquo(.vertical)
.abundance = enquo(.abundance)
.abundance_scaled = enquo(.abundance_scaled)
# x-annotation df
n_x = .data %>% select(!!.horizontal) |> distinct() |> nrow()
n_y = .data %>% select(!!.vertical) |> distinct() |> nrow()
# Sample wise columns
horizontal_cols=
.data %>%
select(-!!.horizontal, -!!.vertical, -!!.abundance) %>%
colnames %>%
map(
~
.x %>%
when(
.data %>%
select(!!.horizontal, !!as.symbol(.x)) %>%
distinct() |>
nrow() %>%
equals(n_x) ~ .x,
~ NULL
)
) %>%
# Drop NULL
{ (.)[lengths((.)) != 0] } %>%
unlist
# Transcript wise columns
vertical_cols=
.data %>%
select(-!!.horizontal, -!!.vertical, -!!.abundance, -horizontal_cols) %>%
colnames %>%
map(
~
.x %>%
ifelse_pipe(
.data %>%
select(!!.vertical, !!as.symbol(.x)) |>
distinct() |>
nrow() %>%
equals(n_y),
~ .x,
~ NULL
)
) %>%
# Drop NULL
{ (.)[lengths((.)) != 0] } %>%
unlist
# Counts wise columns, at the moment scaled counts is treated as special and not accounted for here
counts_cols =
.data %>%
select(-!!.horizontal, -!!.vertical, -!!.abundance) %>%
# Exclude horizontal
ifelse_pipe(!is.null(horizontal_cols), ~ .x %>% select(-horizontal_cols)) %>%
# Exclude vertical
ifelse_pipe(!is.null(vertical_cols), ~ .x %>% select(-vertical_cols)) %>%
# Exclude scaled counts if exist
ifelse_pipe(.abundance_scaled %>% quo_is_symbol, ~ .x %>% select(-!!.abundance_scaled) ) %>%