-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn.py
67 lines (55 loc) · 1.94 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
CNN for text data
Credict: https://github.com/zachAlbus/pyTorch-text-classification/blob/master/Zhang/model.py
"""
import torch
from torch import nn
from transformers import AutoTokenizer
from torch.autograd import Variable
class CNN(nn.Module):
def __init__(self, embedding_dim=300, hidden_dim=128, output_dim=1):
self.use_gpu = torch.cuda.is_available()
self.hidden_dim = hidden_dim
super(CNN, self).__init__()
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
self.embedding = nn.Embedding(len(self.tokenizer), embedding_dim)
self.conv1 = nn.Sequential(
nn.Conv1d(1, 256, kernel_size=7, stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=3, stride=3)
)
self.conv2 = nn.Sequential(
nn.Conv1d(256, 256, kernel_size=7, stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=3, stride=3)
)
self.conv3 = nn.Sequential(
nn.Conv1d(256, 256, kernel_size=3, stride=1),
nn.ReLU()
)
self.conv4 = nn.Sequential(
nn.Conv1d(256, 256, kernel_size=3, stride=1),
nn.ReLU()
)
self.conv5 = nn.Sequential(
nn.Conv1d(256, 256, kernel_size=3, stride=1),
nn.ReLU()
)
self.conv6 = nn.Sequential(
nn.Conv1d(256, 256, kernel_size=3, stride=1),
nn.ReLU(),
nn.MaxPool1d(kernel_size=3, stride=3)
)
self.fc = nn.Linear(256, output_dim)
def forward(self, batch_seqs, batch_seq_masks=None, batch_seq_segments=None):
x = self.embedding(batch_seqs) # batch x sen_len x emb_size
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.conv6(x)
# collapse
x = x.view(x.size(0), -1)
out = self.fc(x)
return out