-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
328 lines (258 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# -*- coding: utf-8 -*-
# @Project: STCGAT
# @Author : shiqiZhang
import glob
import os
import time
import h5py
import torch
import random
import argparse
import configparser
import numpy as np
import torch.nn as nn
import torch.optim as optim
from utils.SoftDTW import SoftDTW
from models.STCGAT import STCGAT
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils.metrics_1 import All_Metrics
from utils.prepareData import LoadData, preprocess_grap, get_adjacent_matrix
from utils.utils import visualize_result, create_dir_not_exist
from utils.load_data import get_dataloader, recover_data
Mode = 'Train' # Train or Test
DATASET = 'PEMSD4'
MODEL = 'STCGAT'
#get configuration
config_file = './config/{}_{}.conf'.format(DATASET, MODEL)
config = configparser.ConfigParser()
config.read(config_file)
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=config['train']['seed'], help='Random seed.')
parser.add_argument('--epochs', type=int, default=config['train']['epochs'], help='Number of epochs to train.')
parser.add_argument('--batch_size', type=int, default=config['train']['batch_size'], help='Batch Size.')
parser.add_argument('--lr', type=float, default=config['train']['lr'], help='Initial learning rate.')
parser.add_argument('--gamma', type=float, default=config['train']['gamma'], help='soft-DTW gamma parameters.')
parser.add_argument('--alpha', type=float, default=config['train']['alpha'], help='alpha.')
parser.add_argument('--dropout', type=float, default=config['train']['dropout'], help='dropout.')
parser.add_argument('--num_nodes', type=int, default=config['data']['num_nodes'], help='Number of graph nodes.')
parser.add_argument('--history_length', type=int, default=config['data']['history_length'], help='Number of historical values.')
parser.add_argument('--predict_length', type=int, default=config['data']['predict_length'], help='Number of predicted values.')
parser.add_argument('--train_ratio', type=float, default=config['data']['train_ratio'], help='Training set partition rate.')
parser.add_argument('--val_ratio', type=float, default=config['data']['val_ratio'], help='Validation set partition rate.')
parser.add_argument('--test_ratio', type=float, default=config['data']['test_ratio'], help='Test set split ratio.')
parser.add_argument('--mae_thresh', default=config['test']['mae_thresh'], type=eval)
parser.add_argument('--mape_thresh', default=config['test']['mape_thresh'], type=float)
parser.add_argument('--input_dim', type=int, default=config['model']['input_dim'], help='Model input value dimension.')
parser.add_argument('--gat_units', type=int, default=config['model']['gat_units'], help='Number of hidden layers of GAT.')
parser.add_argument('--gat_heads', type=int, default=config['model']['gat_heads'], help='Number of long attention spans.')
parser.add_argument('--gatOut_dim', type=int, default=config['model']['gatOut_dim'], help='GAT Output Dimension.')
parser.add_argument('--lstm_units', type=int, default=config['model']['lstm_units'], help='Number of hidden layers of LSTM.')
parser.add_argument('--num_layers', type=int, default=config['model']['num_layers'], help='Number of LSTM layers.')
parser.add_argument('--tcn_units', type=int, default=config['model']['tcn_units'], help='Number of hidden layers of TCN.')
parser.add_argument('--d', type=int, default=config['model']['d'])
parser.add_argument('--kernel_size', type=int, default=config['model']['kernel_size'])
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
nodes_num = args.num_nodes
model = STCGAT(device=device, input_dim=args.input_dim, gat_units=args.gat_units, gatOut_dim=args.gatOut_dim, gat_heads=args.gat_heads,
dropout=args.dropout, predict_length=args.predict_length, lstm_units=args.lstm_units,
num_layers=args.num_layers, alpha=args.alpha, tcn_units=args.tcn_units, d=args.d,
kernel_size=args.kernel_size).to(device)
optimizer = optim.Adam(model.parameters(),
lr=args.lr)
criterion = nn.MSELoss()
criterion_SoftDTW = SoftDTW(use_cuda=False, gamma=args.gamma)
def res(model, test_loader, graph, flow_norm):
model.eval()
pred = []
label = []
with torch.no_grad():
pbar = tqdm(test_loader)
for data in pbar:
flow = data[0].to(device)
B = flow.shape[0]
T = flow.shape[1]
predict_value = model(flow, graph).to(
torch.device("cpu")).view(B, T, -1)
prediction = recover_data(flow_norm[0], flow_norm[1],
predict_value.transpose(0, 1).numpy())
target = recover_data(flow_norm[0], flow_norm[1],
data[1].view(B, T, -1).transpose(0, 1).numpy())
pbar.set_description("Val")
p = np.swapaxes(prediction, 0, 1)
q = np.swapaxes(target, 0, 1)
pred.append(p)
label.append(q)
pred = np.concatenate(pred, axis=0)
label = np.concatenate(label, axis=0)
T = pred.shape[2]
maes = []
rmses = []
mapes = []
for i in range(T):
mae, rmse, mape, _, _ = All_Metrics(label[:, :, i], pred[:, :, i],
args.mae_thresh, args.mape_thresh)
maes.append(mae)
rmses.append(rmse)
mapes.append(mape)
print('Horizon {}, MAE:{:.2f}, RMSE: {:.2f}, MAPE: {:.2f}%'.format(i + 1, mae, rmse, mape * 100))
return np.mean(maes), np.mean(rmses), np.mean(mapes) *100
def test(model, test_loader, graph, flow_norm):
model.eval()
pred = []
label = []
with torch.no_grad():
pbar = tqdm(test_loader)
for data in pbar:
flow = data[0].to(device)
B = flow.shape[0]
T = flow.shape[1]
predict_value = model(flow, graph).to(
torch.device("cpu")).view(B, T, -1)
prediction = recover_data(flow_norm[0], flow_norm[1],
predict_value.transpose(0, 1).numpy())
target = recover_data(flow_norm[0], flow_norm[1],
data[1].view(B, T, -1).transpose(0, 1).numpy())
pbar.set_description("Test")
p = np.swapaxes(prediction, 0, 1)
q = np.swapaxes(target, 0, 1)
pred.append(p)
label.append(q)
pred = np.concatenate(pred, axis=0)
label = np.concatenate(label, axis=0)
T = pred.shape[2]
maes = []
rmses = []
mapes = []
result_dir_data = "result/{}/data_result".format(DATASET)
result_dir_pic = "result/{}/picture_result".format(DATASET)
create_dir_not_exist(result_dir_data)
create_dir_not_exist(result_dir_pic)
result_file = "{}/result.h5".format(result_dir_data)
file_obj = h5py.File(result_file, "w")
file_obj["predict"] = pred.reshape(nodes_num, -1)[:, :, np.newaxis] # [N, T, D]
file_obj["target"] = label.reshape(nodes_num, -1)[:, :, np.newaxis] # [N, T, D]
file_obj.close()
for i in range(T):
mae, rmse, mape, _, _ = All_Metrics(label[:, :, i], pred[:, :, i],
args.mae_thresh, args.mape_thresh)
# mae, rmse, mape, r2_new = Evaluation.total_3(np.round(label[:, :, i]), np.round(pred[:, :, i]))
maes.append(mae)
rmses.append(rmse)
mapes.append(mape)
print('Horizon {}, MAE:{:.2f}, RMSE: {:.2f}, MAPE: {:.2f}%'.format(i + 1, mae, rmse, mape*100))
return np.mean(maes), np.mean(rmses), np.mean(mapes)*100
def train(model, train_loader, graph, flow_norm):
RESUME = False # Whether to continue breakpoint training
start_epoch = -1
checkpointDir = "saveModels/{}/checkpoint".format(DATASET)
create_dir_not_exist(checkpointDir)
if RESUME:
path_checkpoint = "{}/ckpt_best_9.pth".format(checkpointDir) # Mount Breakpoint
checkpoint = torch.load(path_checkpoint)
model.load_state_dict(checkpoint['net'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
# Train model
bad_counter = 0
best = args.epochs + 1
best_epoch = 0
for epoch in range(start_epoch + 1, args.epochs):
model.train()
total_train_loss = 0.
start_time = time.time()
pbar = tqdm(train_loader)
num = 0
for data in pbar:
optimizer.zero_grad()
flow = data[0].to(device)
labels_value = data[1]
predict_value = model(flow, graph).to(
torch.device("cpu"))
B = predict_value.shape[0]
T = predict_value.shape[2]
_y = predict_value.transpose(1, 2).view(B, T, -1)
y = data[1].transpose(1, 2).view(B, T, -1)
loss_SoftDTW = criterion_SoftDTW(y, _y)
loss_SoftDTW.mean().backward()
optimizer.step()
loss_train = criterion(predict_value, labels_value)
pbar.set_postfix({'loss': '{:02.4f}'.format(loss_train.item())}) # 输入一个字典,显示实验指标
pbar.set_description("Trainer")
total_train_loss += loss_train.item()
num += 1
end_time = time.time()
checkpoint = {
"net": model.state_dict(),
'optimizer': optimizer.state_dict(),
"epoch": epoch
}
torch.save(checkpoint, '{}/ckpt_best_%s.pth'.format(checkpointDir) % (str(epoch)))
print("Epoch: {:04d}, loss_train:{:.4f}, Time: {:02.2f} mins".format(epoch + 1,
1000 * total_train_loss / len(train_data),
(end_time - start_time) / 60))
if epoch % 10 == 0 and epoch != 0:
mae, rmse, mape = res(model, val_loader, graph, flow_norm)
print('Average Horizon, MAE:{:.2f}, RMSE: {:.2f}, MAPE: {:.2f}%'.format(mae, rmse, mape))
average_loss = total_train_loss/num
torch.save(model.state_dict(), '{}.pkl'.format(epoch))
if average_loss < best:
best = average_loss
best_epoch = epoch
bad_counter = 0
else:
bad_counter += 1
files = glob.glob('*.pkl')
for file in files:
if file.split('.')[0].isdigit():
epoch_nb = int(file.split('.')[0])
if epoch_nb < best_epoch:
os.remove(file)
files = glob.glob('*.pkl')
for file in files:
if file.split('.')[0].isdigit():
epoch_nb = int(file.split('.')[0])
if epoch_nb > best_epoch:
os.remove(file)
# Restore best model
os.rename('{}.pkl'.format(best_epoch), 'best_{}.pkl'.format(DATASET))
print('Loading the best epoch.')
model.load_state_dict(torch.load('best_{}.pkl'.format(DATASET)))
# Testing
mae, rmse, mape = test(model, test_loader, graph, flow_norm)
print('Average Horizon, MAE:{:.2f}, RMSE: {:.2f}, MAPE: {:.2f}%'.format(mae, rmse, mape))
visualize_result(h5_file="result/{}/data_result/result.h5".format(DATASET),
nodes_id=1, time_se=[0, 12 * 24], # nodes_id:Number of visualization nodes, time_se:Visualization time range
visualize_file="result/{}/picture_result/node".format(DATASET))
if __name__ == "__main__":
train_data, val_data, test_data, flow_norm = get_dataloader(dataset=DATASET,
split_ratio=[args.train_ratio, args.val_ratio, args.test_ratio], lag=args.history_length,
horizon=args.predict_length)
graph = preprocess_grap(LoadData.to_tensor(
get_adjacent_matrix(distance_file=DATASET, num_nodes=nodes_num))).to(device)
train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=8)
val_loader = DataLoader(val_data, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=8)
if Mode == 'Train':
train(model=model, train_loader=train_loader, graph=graph, flow_norm=flow_norm)
elif Mode == 'Test':
files = glob.glob('*.pkl')
for file in files:
if 'best_{}.pkl'.format(DATASET) == file:
print('Loading the best epoch.')
model.load_state_dict(torch.load('best_{}.pkl'.format(DATASET)))
# Testing
mae, rmse, mape = test(model, test_loader, graph, flow_norm)
print('Average Horizon, MAE:{:.2f}, RMSE: {:.2f}, MAPE: {:.2f}%'.format(mae, rmse, mape))
break
else:
print("Error:Model not yet trained!")
else:
print("Please set the mode to Train or Test!")