forked from pyEudetAnalysis/pyEudetAnalysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCluster.py
415 lines (331 loc) · 16.9 KB
/
Cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
'''
author: Anne-Laure pequegnot
'''
from math import fsum
from Constant import *
from ROOT import TMath
from ToolBox import *
#
# Compute the shift in the hit position due to the charge sharing (eta correction) when neighbour pixels are on the same row or the same column
# first parameter: sigma of the eta correction (charge sharing)
# second parameter: relative charge Qrel = (charge of the pixel with the highest energy)/(total charge of the cluster)
#
def shiftLat(sigma_tmp,Qrel_tmp):
return sigma_tmp*TMath.ErfInverse(2.*Qrel_tmp-1.)
#
# Compute the shift in the hit position due to the charge sharing (eta correction) when neighbour pixels are on a diadonal
# first parameter: sigma of the eta correction (charge sharing)
# second parameter: relative charge Qrel = (charge of the pixel with the highest energy)/(total charge of the cluster)
#
def shiftDiag(sigma_tmp,Qrel_tmp):
return sigma_tmp*TMath.ErfInverse(2.*Qrel_tmp-1.)*1./sqrt(2.),sigma_tmp*TMath.ErfInverse(2.*Qrel_tmp-1.)*1./sqrt(2.)
###############################################################################################################################
#
# Class for the clusters and their properties
#
###############################################################################################################################
class Cluster:
col = []
row = []
tot = []
energyGC = []
energyPbPC = []
sizeX = 0
sizeY = 0
size = 0
totalTOT =0
aspectRatio = 0
# local coordinates
relX = 0.
relY = 0.
relZ = 0.
relX_energyGC = 0.
relY_energyGC = 0.
relZ_energyGC = 0.
relX_energyPbPC = 0.
relY_energyPbPC = 0.
relZ_energyPbPC = 0.
# telescope coordinates
absX =-10000.
absY =-10000.
absZ =-10000.
absX_energyGC =-10000.
absY_energyGC =-10000.
absZ_energyGC =-10000.
absX_energyPbPC =-10000.
absY_energyPbPC =-10000.
absZ_energyPbPC =-10000.
resX = -10000.
resY = -10000.
resX_energyGC = -10000.
resY_energyGC = -10000.
resX_energyPbPC = -10000.
resY_energyPbPC = -10000.
id = 0
# track number
tracknum = -1
def __init__(self):
self.sizeX = 0
self.sizeY = 0
self.size = 0
self.col = []
self.row = []
self.tot = []
self.energyGC = []
self.energyPbPC = []
def addPixel(self,col,row,tot,energyGC,energyPbPC):
self.col.append(col)
self.row.append(row)
self.tot.append(tot)
self.energyGC.append(energyGC)
self.energyPbPC.append(energyPbPC)
def Print(self):
for i in range(len(self.col)):
print "x:%d y%d tot:%.3f"%(self.col[i],self.row[i],self.tot[i])
print "Cluster Total size = %d , in X = %d Y = %d , Aspect Ratio = %.3f , Total Energy (keV) = %.1f ID = %i"%(self.size,self.sizeX,self.sizeY,self.aspectRatio,self.totalTOT,self.id)
print "Position in sensor X = %.3f Y = %.3f"%(self.absX,self.absY)
def Statistics(self) :
self.totalTOT=fsum(self.tot)
self.size=len(self.col)
self.sizeX=max(self.col)-min(self.col)+1
self.sizeY=max(self.row)-min(self.row)+1
self.aspectRatio=float(self.sizeY)/self.sizeX
self.totalEnergyGC = fsum(self.energyGC)
self.totalEnergyPbPC = fsum(self.energyPbPC)
#
#compute the hit position as the mean of the fired pixels positions weighted by their deposited energy
#
def GetQWeightedCentroid(self) :
self.relX=0.
self.relY=0.
self.relX_energyGC=0.
self.relY_energyGC=0.
self.relX_energyPbPC=0.
self.relY_energyPbPC=0.
if(self.totalTOT==0):
self.GetDigitalCentroid()
else :
for index,tot_tmp in enumerate(self.tot) :
self.relX+=(self.col[index]*pitchX)*tot_tmp
self.relY+=(self.row[index]*pitchY)*tot_tmp
self.relX = self.relX/self.totalTOT + pitchX/2.
self.relY = self.relY/self.totalTOT + pitchY/2.
self.absX=self.relX - halfChip_X
self.absY=self.relY - halfChip_Y
self.absZ=0
if ((self.totalEnergyGC > 0) and (0 not in self.energyGC)):
for index,energyGC_tmp in enumerate(self.energyGC) :
self.relX_energyGC+=(self.col[index]*pitchX)*energyGC_tmp
self.relY_energyGC+=(self.row[index]*pitchY)*energyGC_tmp
self.relX_energyGC = self.relX_energyGC/self.totalEnergyGC + pitchX/2.
self.relY_energyGC = self.relY_energyGC/self.totalEnergyGC + pitchY/2.
self.absX_energyGC=self.relX_energyGC - halfChip_X
self.absY_energyGC=self.relY_energyGC - halfChip_Y
self.absZ_energyGC=0
if ((self.totalEnergyPbPC > 0) and (0 not in self.energyPbPC)):
for index,energyPbPC_tmp in enumerate(self.energyPbPC) :
self.relX_energyPbPC+=(self.col[index]*pitchX)*energyPbPC_tmp
self.relY_energyPbPC+=(self.row[index]*pitchY)*energyPbPC_tmp
self.relX_energyPbPC = self.relX_energyPbPC/self.totalEnergyPbPC + pitchX/2.
self.relY_energyPbPC = self.relY_energyPbPC/self.totalEnergyPbPC + pitchY/2.
self.absX_energyPbPC=self.relX_energyPbPC - halfChip_X
self.absY_energyPbPC=self.relY_energyPbPC - halfChip_Y
self.absZ_energyPbPC=0
#
#compute the hit position as the mean of the fired pixels positions (digital method)
#
def GetDigitalCentroid(self) :
self.relX=0.
self.relY=0.
for index,col_tmp in enumerate(self.col) :
self.relX+=(self.col[index]*pitchX)
self.relY+=(self.row[index]*pitchY)
self.relX = self.relX/len(self.col) + pitchX/2.
self.relY = self.relY/len(self.row) + pitchY/2.
self.absX=self.relX - halfChip_X
self.absY=self.relY - halfChip_Y
self.absZ=0
#
#compute the hit position as the center of the fired pixel with the highest energy
#
def GetMaxTOTCentroid(self) :
maxTOTindex_tmp=0
maxTOT_tmp=self.tot[0]
for index,tot_tmp in enumerate(self.tot) :
if self.tot[index]>maxTOT_tmp:
maxTOT_tmp=self.tot[index]
maxTOTindex_tmp=index
self.relX=self.col[maxTOTindex_tmp]*pitchX + pitchX/2.
self.relY=self.row[maxTOTindex_tmp]*pitchY + pitchY/2.
self.absX=self.relX - halfChip_X
self.absY=self.relY - halfChip_Y
self.absZ=0
#
#compute the hit position as the Qweighted method but adding an eta correction du to the charge sharing between the fired pixels
#
def GetEtaCorrectedQWeightedCentroid(self,sigma=0.003,sigmaGC=0.003,sigmaPbPC=0.003) :
self.relX = -1000
self.relY = -1000
self.absX = -1000
self.absY = -1000
self.relX_energyGC = -1000
self.relY_energyGC = -1000
self.absX_energyGC = -1000
self.absY_energyGC = -1000
self.relX_energyPbPC = -1000
self.relY_energyPbPC = -1000
self.absX_energyPbPC = -1000
self.absY_energyPbPC = -1000
if(self.size==2) :
if(self.sizeX==2 and self.sizeY==1) :
# cluster size 2x1
Qrel = self.tot[self.col.index(min(self.col))] / self.totalTOT
self.relX = max(self.col)*pitchX - shiftLat(sigma,Qrel)
self.relY = self.row[0]*pitchY + pitchY/2.
if ((self.totalEnergyGC > 0) and (0 not in self.energyGC)):
Qrel_energyGC = self.energyGC[self.col.index(min(self.col))] / self.totalEnergyGC
self.relX_energyGC = max(self.col)*pitchX - shiftLat(sigmaGC,Qrel_energyGC)
self.relY_energyGC = self.row[0]*pitchY + pitchY/2.
if ((self.totalEnergyPbPC > 0) and (0 not in self.energyPbPC)):
Qrel_energyPbPC = self.energyPbPC[self.col.index(min(self.col))] / self.totalEnergyPbPC
self.relX_energyPbPC = max(self.col)*pitchX - shiftLat(sigmaPbPC,Qrel_energyPbPC)
self.relY_energyPbPC = self.row[0]*pitchY + pitchY/2.
elif(self.sizeX==1 and self.sizeY==2) :
# cluster size 1x2
Qrel = self.tot[self.row.index(min(self.row))] / self.totalTOT
self.relX = self.col[0]*pitchX + pitchX/2.
self.relY = max(self.row)*pitchY - shiftLat(sigma,Qrel)
if ((self.totalEnergyGC > 0) and (0 not in self.energyGC)):
Qrel_energyGC = self.energyGC[self.row.index(min(self.row))] / self.totalEnergyGC
self.relX_energyGC = self.col[0]*pitchX + pitchX/2.
self.relY_energyGC = max(self.row)*pitchY - shiftLat(sigmaGC,Qrel_energyGC)
if ((self.totalEnergyPbPC > 0) and (0 not in self.energyPbPC)):
Qrel_energyPbPC = self.energyPbPC[self.row.index(min(self.row))] / self.totalEnergyPbPC
self.relX_energyPbPC = self.col[0]*pitchX + pitchX/2.
self.relY_energyPbPC = max(self.row)*pitchY - shiftLat(sigmaPbPC,Qrel_energyPbPC)
elif(self.sizeX==2 and self.sizeY==2) :
# cluster size 2 with sizeX = 2 and sizeY = 2 i.e. 2 pixels on a diagonal
self.GetMaxTOTCentroid()
elif(self.size==4) :
if(self.sizeX==2 and self.sizeY==2) :
for i in xrange(len(self.row)):
if self.row[i] == min(self.row) and self.col[i] == min(self.col):
bottomlefti = i
if self.row[i] == max(self.row) and self.col[i] == max(self.col):
toprighti = i
if self.row[i] == min(self.row) and self.col[i] == max(self.col):
toplefti = i
if self.row[i] == max(self.row) and self.col[i] == min(self.col):
bottomrighti = i
Qrel1 = self.tot[bottomlefti] / (self.tot[bottomlefti] + self.tot[toprighti])
Qrel2 = self.tot[bottomrighti] / (self.tot[bottomrighti] + self.tot[toplefti])
shift1X,shift1Y = shiftDiag(sigma,Qrel1)
shift2X,shift2Y = shiftDiag(sigma,Qrel2)
self.relX = max(self.col)*pitchX - shift1X - shift2X
self.relY = max(self.row)*pitchY - shift1Y + shift2Y
if ((self.totalEnergyGC > 0) and (0 not in self.energyGC)):
Qrel1_energyGC = self.energyGC[bottomlefti] / (self.energyGC[bottomlefti] + self.energyGC[toprighti])
Qrel2_energyGC = self.energyGC[bottomrighti] / (self.energyGC[bottomrighti] + self.energyGC[toplefti])
shift1X_GC,shift1Y_GC = shiftDiag(sigmaGC,Qrel1_energyGC)
shift2X_GC,shift2Y_GC = shiftDiag(sigmaGC,Qrel2_energyGC)
self.relX_energyGC = max(self.col)*pitchX - shift1X_GC - shift2X_GC
self.relY_energyGC = max(self.row)*pitchY - shift1Y_GC + shift2Y_GC
if ((self.totalEnergyPbPC > 0) and (0 not in self.energyPbPC)):
Qrel1_energyPbPC = self.energyPbPC[bottomlefti] / (self.energyPbPC[bottomlefti] + self.energyPbPC[toprighti])
Qrel2_energyPbPC = self.energyPbPC[bottomrighti] / (self.energyPbPC[bottomrighti] + self.energyPbPC[toplefti])
shift1X_PbPC,shift1Y_PbPC = shiftDiag(sigmaPbPC,Qrel1_energyPbPC)
shift2X_PbPC,shift2Y_PbPC = shiftDiag(sigmaPbPC,Qrel2_energyPbPC)
self.relX_energyPbPC = max(self.col)*pitchX - shift1X_PbPC - shift2X_PbPC
self.relY_energyPbPC = max(self.row)*pitchY - shift1Y_PbPC + shift2Y_PbPC
else : # not 2x2 -> using the simple Qweighted centroid
self.GetQWeightedCentroid()
elif(self.size==3) :
if(self.sizeX==2 and self.sizeY==2) :
# copy original row, col, tot to keep safe
orig_row = list(self.row)
orig_col = list(self.col)
orig_tot = list(self.tot)
orig_energyGC = list(self.energyGC)
orig_energyPbPC = list(self.energyPbPC)
# calculate and add missing pixel
for i in xrange(len(self.row)):
if self.row.count(self.row[i]) == 1:
self.row.append(self.row[i])
if self.col.count(self.col[i]) == 1:
self.col.append(self.col[i])
self.tot.append(1.0)
self.energyGC.append(1.0)
self.energyPbPC.append(1.0)
# proceed as 4 cluster case
for i in xrange(len(self.row)):
if self.row[i] == min(self.row) and self.col[i] == min(self.col):
bottomlefti = i
if self.row[i] == max(self.row) and self.col[i] == max(self.col):
toprighti = i
if self.row[i] == min(self.row) and self.col[i] == max(self.col):
toplefti = i
if self.row[i] == max(self.row) and self.col[i] == min(self.col):
bottomrighti = i
Qrel1 = self.tot[bottomlefti] / (self.tot[bottomlefti] + self.tot[toprighti])
Qrel2 = self.tot[bottomrighti] / (self.tot[bottomrighti] + self.tot[toplefti])
shift1X,shift1Y = shiftDiag(sigma,Qrel1)
shift2X,shift2Y = shiftDiag(sigma,Qrel2)
self.relX = max(self.col)*pitchX - shift1X - shift2X
self.relY = max(self.row)*pitchY - shift1Y + shift2Y
if ((self.totalEnergyGC > 0) and (0 not in self.energyGC)):
Qrel1_energyGC = self.energyGC[bottomlefti] / (self.energyGC[bottomlefti] + self.energyGC[toprighti])
Qrel2_energyGC = self.energyGC[bottomrighti] / (self.energyGC[bottomrighti] + self.energyGC[toplefti])
shift1X_GC,shift1Y_GC = shiftDiag(sigmaGC,Qrel1_energyGC)
shift2X_GC,shift2Y_GC = shiftDiag(sigmaGC,Qrel2_energyGC)
self.relX_energyGC = max(self.col)*pitchX - shift1X_GC - shift2X_GC
self.relY_energyGC = max(self.row)*pitchY - shift1Y_GC + shift2Y_GC
if ((self.totalEnergyPbPC > 0) and (0 not in self.energyPbPC)):
Qrel1_energyPbPC = self.energyPbPC[bottomlefti] / (self.energyPbPC[bottomlefti] + self.energyPbPC[toprighti])
Qrel2_energyPbPC = self.energyPbPC[bottomrighti] / (self.energyPbPC[bottomrighti] + self.energyPbPC[toplefti])
shift1X_PbPC,shift1Y_PbPC = shiftDiag(sigmaPbPC,Qrel1_energyPbPC)
shift2X_PbPC,shift2Y_PbPC = shiftDiag(sigmaPbPC,Qrel2_energyPbPC)
self.relX_energyPbPC = max(self.col)*pitchX - shift1X_PbPC - shift2X_PbPC
self.relY_energyPbPC = max(self.row)*pitchY - shift1Y_PbPC + shift2Y_PbPC
# put back original row, col, tot
self.row = orig_row
self.col = orig_col
self.tot = orig_tot
self.energyGC = orig_energyGC
self.energyPbPC = orig_energyPbPC
else : # not 2x2 -> using the simple Qweighted centroid
self.GetQWeightedCentroid()
else : # other cluster sizes -> using the simple Qweighted centroid
self.GetQWeightedCentroid()
self.absX = self.relX - halfChip_X
self.absY = self.relY - halfChip_Y
self.absZ = 0
self.absX_energyGC = self.relX_energyGC - halfChip_X
self.absY_energyGC = self.relY_energyGC - halfChip_Y
self.absZ_energyGC = 0
self.absX_energyPbPC = self.relX_energyPbPC - halfChip_X
self.absY_energyPbPC = self.relY_energyPbPC - halfChip_Y
self.absZ_energyPbPC = 0
if (self.relX == -1000 or self.relY == -1000 or self.absX == -1000 or self.absY == -1000):
print "WARNING GetEtaCorrectedQWeightedCentroid didn't calculate centroid for some cluster"
print "WARNING This should never happen - review code"
def GetResiduals(self,x,y) :
self.resX = self.absX-(x)
self.resY = self.absY-(y)
self.resX_energyGC = self.absX_energyGC-(x)
self.resY_energyGC = self.absY_energyGC-(y)
self.resX_energyPbPC = self.absX_energyPbPC-(x)
self.resY_energyPbPC = self.absY_energyPbPC-(y)
def GetPixelResiduals(self,trackx,tracky) :
# compute the x, y distances between a track
# and the centre of each pixel in the cluster
# return the smallest combined
dr = []
dx = []
dy = []
for i in xrange(self.size):
resX = self.col[i]*pitchX + pitchX/2. - halfChip_X - trackx
resY = self.row[i]*pitchY + pitchY/2. - halfChip_Y - tracky
dr.append(sqrt(resX**2 + resY**2))
dx.append(resX)
dy.append(resY)
return min(dr), dx[dr.index(min(dr))], dy[dr.index(min(dr))]