1
1
#-*- coding: utf-8 -*-
2
+ from __future__ import print_function
2
3
import numpy as np
3
4
from matplotlib import pyplot as plt
4
5
from matplotlib import colors
11
12
12
13
def KMeans ():
13
14
'''二维数据聚类过程演示'''
14
- print u'聚类过程展示...\n '
15
+ print ( u'聚类过程展示...\n ' )
15
16
data = spio .loadmat ("data.mat" )
16
17
X = data ['X' ]
17
18
K = 3 # 总类数
@@ -21,7 +22,7 @@ def KMeans():
21
22
'''
22
23
图片压缩
23
24
'''
24
- print u'K-Means压缩图片\n '
25
+ print ( u'K-Means压缩图片\n ' )
25
26
img_data = misc .imread ("bird.png" ) # 读取图片像素数据
26
27
img_data = img_data / 255.0 # 像素值映射到0-1
27
28
img_size = img_data .shape
@@ -31,21 +32,21 @@ def KMeans():
31
32
max_iters = 5
32
33
initial_centroids = kMeansInitCentroids (X ,K )
33
34
centroids ,idx = runKMeans (X , initial_centroids , max_iters , False )
34
- print u'\n K-Means运行结束\n '
35
- print u'\n 压缩图片...\n '
35
+ print ( u'\n K-Means运行结束\n ' )
36
+ print ( u'\n 压缩图片...\n ' )
36
37
idx = findClosestCentroids (X , centroids )
37
38
X_recovered = centroids [idx ,:]
38
39
X_recovered = X_recovered .reshape (img_size [0 ],img_size [1 ],3 )
39
40
40
- print u'绘制图片...\n '
41
+ print ( u'绘制图片...\n ' )
41
42
plt .subplot (1 ,2 ,1 )
42
43
plt .imshow (img_data )
43
44
plt .title (u"原先图片" ,fontproperties = font )
44
45
plt .subplot (1 ,2 ,2 )
45
46
plt .imshow (X_recovered )
46
47
plt .title (u"压缩图像" ,fontproperties = font )
47
48
plt .show ()
48
- print u'运行结束!'
49
+ print ( u'运行结束!' )
49
50
50
51
51
52
# 找到每条数据距离哪个类中心最近
@@ -86,7 +87,7 @@ def runKMeans(X,initial_centroids,max_iters,plot_process):
86
87
idx = np .zeros ((m ,1 )) # 每条数据属于哪个类
87
88
88
89
for i in range (max_iters ): # 迭代次数
89
- print u'迭代计算次数:%d' % (i + 1 )
90
+ print ( u'迭代计算次数:%d' % (i + 1 ) )
90
91
idx = findClosestCentroids (X , centroids )
91
92
if plot_process : # 如果绘制图像
92
93
plt = plotProcessKMeans (X ,centroids ,previous_centroids ) # 画聚类中心的移动过程
0 commit comments