forked from ssbuild/chatglm_finetuning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
193 lines (152 loc) · 8.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-
import logging
import os
import torch
from deep_training.data_helper import ModelArguments, DataArguments, TrainingArguments
from deep_training.utils.trainer import ModelCheckpoint, SimpleModelCheckpoint
from lightning import Trainer
from lightning.pytorch.callbacks import LearningRateMonitor
from lightning.pytorch.strategies import DeepSpeedStrategy
from transformers import HfArgumentParser
from data_utils import NN_DataHelper, train_info_args, get_deepspeed_config,global_args
from models import MyTransformer, ChatGLMTokenizer,LoraArguments,ChatGLMConfig, setup_model_profile
class MySimpleModelCheckpoint(SimpleModelCheckpoint):
def __init__(self, *args, **kwargs):
super(MySimpleModelCheckpoint, self).__init__(*args, **kwargs)
lora_args: LoraArguments = self.external_kwargs['lora_args']
if lora_args:
self.weight_file = './best_ckpt'
self.last_weight_file = './last_ckpt'
def load_model_from_ckpt(self):
model_args = self.external_kwargs['model_args']
training_args = self.external_kwargs['training_args']
lora_args = LoraArguments.from_pretrained(self.last_weight_file)
pl_module = MyTransformer(lora_args=lora_args,
config=config,
model_args=model_args,
training_args=training_args)
pl_module.load_sft_weight(self.last_weight_file)
return pl_module
def on_save_model(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"
) -> None:
lora_args : LoraArguments = self.external_kwargs['lora_args']
# 保存权重
if lora_args is None:
super(MySimpleModelCheckpoint, self).on_save_model(trainer, pl_module)
else:
#保存最新权重
logging.info('step {} saving model'.format(trainer.global_step))
pl_module.backbone.save_pretrained(self.weight_file)
# monitor_candidates = self._monitor_candidates(trainer)
# monitor_candidates.update(self.on_get_metric(trainer, pl_module))
# val = monitor_candidates.get(self.monitor, None)
# #保存loss最小权重
# if self.update_best(val):
# logging.info('epoch {} ,step {} , save best {}, {}\n'.format(monitor_candidates['epoch'],
# monitor_candidates['step'],
# self.best[self.monitor],
# self.weight_file))
# pl_module.backbone.save_pretrained(self.weight_file)
# #保存最新权重
# pl_module.backbone.save_pretrained(self.last_weight_file)
# # # 从最新权重加载模型
# # pl_module = self.load_model_from_ckpt()
if __name__ == '__main__':
parser = HfArgumentParser((ModelArguments, TrainingArguments, DataArguments, LoraArguments))
model_args, training_args, data_args, lora_args = parser.parse_dict(train_info_args)
lora_args = lora_args.config
#
setup_model_profile()
deepspeed_config = get_deepspeed_config()
# 保存最小loss模型
if lora_args:
assert deepspeed_config is None,ValueError('lora mode does not support deepspeed')
checkpoint_callback = MySimpleModelCheckpoint(
# monitor="loss",
save_weights_only = True,
every_n_epochs = 1,
every_n_train_steps=2000 // training_args.gradient_accumulation_steps,
#模型参数
model_args=model_args,
training_args=training_args,
lora_args=lora_args,)
else:
checkpoint_callback = ModelCheckpoint('./best_ckpt',
# monitor='loss',
save_weights_only=True,
save_last=True,
save_top_k=1,
# every_n_train_steps=1000,
every_n_epochs=1)
strategy = 'ddp' if torch.cuda.device_count() > 1 else 'auto'
if deepspeed_config is not None and len(deepspeed_config):
strategy = DeepSpeedStrategy(config=deepspeed_config,)
dataHelper = NN_DataHelper(model_args, training_args, data_args)
config_kwargs = {"pre_seq_len": global_args["pre_seq_len"],
"prefix_projection": global_args["pre_seq_len"]}
if global_args["num_layers"] > 0:
config_kwargs["num_layers"] = global_args["num_layers"]
tokenizer, config, _, _ = dataHelper.load_tokenizer_and_config(tokenizer_class_name=ChatGLMTokenizer,config_class_name=ChatGLMConfig,config_kwargs=config_kwargs)
assert tokenizer.eos_token_id == 130005
if config.quantization_bit !=0 and not config.pre_seq_len:
raise AssertionError("quantization only support ptv2 finetuning")
if config.quantization_bit != 0 and lora_args is not None:
raise AssertionError("quantization only support ptv2 finetuning")
# 缓存数据集
if data_args.do_train:
dataHelper.make_dataset_with_args(data_args.train_file, mixed_data=False, shuffle=True, mode='train')
if data_args.do_eval:
dataHelper.make_dataset_with_args(data_args.eval_file, mode='eval')
if data_args.do_test:
dataHelper.make_dataset_with_args(data_args.test_file, mode='test')
trainer = Trainer(
callbacks=[checkpoint_callback,LearningRateMonitor(logging_interval='step')],
max_epochs=training_args.max_epochs,
max_steps=training_args.max_steps,
accelerator="gpu",
devices=data_args.devices,
enable_progress_bar=True,
default_root_dir=data_args.output_dir,
gradient_clip_val=training_args.max_grad_norm,
accumulate_grad_batches=training_args.gradient_accumulation_steps,
num_sanity_val_steps=0,
strategy=strategy,
#lora int8 precision='32'
precision= '16' , # #可以自行尝试 "32": "32-true", "16": "16-mixed", "bf16": "bf16-mixed"
)
if config.pre_seq_len is not None and lora_args is not None:
raise ValueError('with lora and ptuning v2 cannot open at the same time')
# 额外参数
checkpoint_callback.tokenizer = tokenizer
checkpoint_callback.data_args = data_args
config.save_pretrained('best_ckpt')
pl_model = MyTransformer(config=config, model_args=model_args, training_args=training_args, lora_args=lora_args,
num_layers_freeze=global_args["num_layers_freeze"],#
quantization_config=global_args["quantization_config"],
load_in_8bit=global_args["load_in_8bit"],
device_map={"": trainer.local_rank} if trainer.world_size > 1 else "auto")
#恢复权重继续训练
# pl_model.load_sft_weight('./best_ckpt/best.pt',is_trainable=True)
if config.pre_seq_len is not None:
# P-tuning v2
pl_model.get_llm_model().half()
pl_model.get_llm_model().transformer.prefix_encoder.float()
else:
# Finetune
pl_model = pl_model.float()
def dataset_loader_filter_fn(dataset):
print('*' * 30, 'total', len(dataset))
return dataset
train_datasets = dataHelper.load_distributed_random_sampler(
dataHelper.train_files,
with_load_memory=data_args.data_backend == 'record',
collate_fn=dataHelper.collate_fn,
batch_size=training_args.train_batch_size,
drop_last=True, # 多卡建议扔掉
num_processes=trainer.world_size, process_index=trainer.global_rank,
dataset_loader_filter_fn=dataset_loader_filter_fn,
num_workers=0
)
if train_datasets is not None:
trainer.fit(pl_model, train_dataloaders=train_datasets)