forked from ssbuild/chatglm_finetuning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
49 lines (37 loc) · 1.11 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# -*- coding: utf-8 -*-
# @Time : 2023/3/29 11:25
import numpy as np
from sacrebleu.metrics import BLEU
from rouge import Rouge
def evaluate(data):
bleu_scorer_obj = BLEU()
rouge_scorer_obj = Rouge()
bleu_score = []
for d in data:
score = bleu_scorer_obj.sentence_score(
hypothesis=d['text'],
references=d['ref'],
)
bleu_score.append(score.score)
bleu_score = np.average(np.asarray(bleu_score))
rouge_score = []
for d in data:
score = rouge_scorer_obj.get_scores(
hyps=[d['text']],
refs=d['ref'],
)
rouge_score.append(score[0]["rouge-l"]["f"])
rouge_score = np.average(np.asarray(rouge_score))
return {
"bleu_score": bleu_score,
"rouge-l_score": rouge_score
}
if __name__ == '__main__':
data = [
{
"text": "to make people trustworthy you need to trust them",
"ref": ["the way to make people trustworthy is to trust them"]
},
]
result = evaluate(data)
print(result)