forked from KiriKoppelgaard/Classifying-Breast-Cancer-from-Mammograms-Using-CNNs-and-Transfer-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN.py
206 lines (166 loc) · 7.76 KB
/
CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
'''
Script to run the baseline models, CNN-L, CNN-M and CNN-S.
First, the data is prepared.
Then, we loop through the three models.
Lastly, the models are evaluated and relevant metrics and plots are saved in the output folder.
'''
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report, confusion_matrix
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.models import load_model
import os
from os.path import exists
import numpy as np
from sklearn.model_selection import *
from keras.utils.vis_utils import plot_model
from contextlib import redirect_stdout
import pandas as pd
from codecarbon import EmissionsTracker
import seaborn as sns
from datetime import datetime
#import functions
from src.utils import *
#Print GPU
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
# load data
root_dir = os.path.abspath("")
filenames=[os.path.join(root_dir,'data','training10_0','training10_0.tfrecords'),
os.path.join(root_dir,'data','training10_1','training10_1.tfrecords'),
os.path.join(root_dir,'data','training10_2','training10_2.tfrecords'),
os.path.join(root_dir,'data','training10_3','training10_3.tfrecords'),
os.path.join(root_dir,'data','training10_4','training10_4.tfrecords')
]
# empty lists
images, labels = [], []
print("loading data")
for file in filenames:
image, label = read_data(file, transfer_learning=False)
images.append(image)
labels.append(label)
print("data has been loaded")
# flatten images and labels (so they are not nested lists)
images = [i for image in images for i in image]
labels = [l for label in labels for l in label]
# define train and test
X=np.array(images)
y=np.array(labels)
#divide data into train, test and val
x_train, x_test1, y_train, y_test1 = train_test_split(X, y, test_size=0.4, random_state=3,
shuffle=True,stratify=y)
x_val, x_test, y_val, y_test = train_test_split(x_test1, y_test1, test_size=0.5, random_state=3,
shuffle=True,stratify=y_test1)
print("train and test split completed")
#clear up space
del X
del y
# Reshaping the array to 4-dims so that it can work with the Keras API
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], 1)
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], 1)
x_val = x_val.reshape(x_val.shape[0], x_val.shape[1], x_val.shape[2], 1)
input_shape = (x_train.shape[1], x_train.shape[2], x_train.shape[3])
# Making sure that the values are float so that we can get decimal points after division
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_val = x_val.astype('float32')
# Normalizing the RGB codes by dividing it to the max RGB value.
x_train /= 255
x_test /= 255
x_val /= 255
print('Number of images in x_train', x_train.shape[0])
print('Number of images in x_test', x_test.shape[0])
print('Number of images in x_val', x_val.shape[0])
print("starting model loop")
#create models for hyperparameter comparison
for model_name in ['cnn_small', 'cnn_medium']: #'cnn_large']:
#Create print
print(model_name, 'initializing')
#define emissionstracker
tracker = EmissionsTracker()
#define model
if model_name == 'cnn_small':
model = cnn(input_shape, conv_layers = [16], dense_layers = [100, 64])
elif model_name == 'cnn_medium':
model = cnn(input_shape, conv_layers = [16, 25], dense_layers = [100, 64])
elif model_name == 'cnn_large':
model = cnn(input_shape, conv_layers = [16, 25, 36], dense_layers = [100, 64])
#Create early stopping object
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=50)
#Initialise check point for best model
mc = ModelCheckpoint(f'output/{model_name}/best_model.h5', monitor='val_loss', mode='min', verbose=1, save_best_only=True)
#compile model
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics = ['accuracy'])
#save model parameters
with open(f'output/{model_name}/{model_name}_summary.txt', 'w') as f:
with redirect_stdout(f):
model.summary()
#measure environmental impact and time
tracker.start()
start_time = datetime.now()
# Fit model
history = model.fit(x=x_train,y=y_train, epochs=200, validation_data=(x_val, y_val), callbacks=[es, mc],verbose=1) #, callbacks=[callback])
#save environmental impact
emissions: float = tracker.stop()
end_time = datetime.now()
co2_path = os.path.join(root_dir,'output', 'co2emissions.csv')
no_epochs = len(history.history['val_loss'])
if exists(co2_path):
with open(co2_path,'a') as fd:
fd.write(f'Emissions for {model_name}: {emissions} kg, Duration: {end_time - start_time}, No. of epochs run: {no_epochs};')
else:
with open(co2_path, 'w') as fd:
fd.write(f'Emissions for {model_name}: {emissions} kg, Duration: {end_time - start_time}, No. of epochs run: {no_epochs};')
# load the saved model
model = load_model(f'output/{model_name}/best_model.h5')
# evaluate the model
_, train_acc = model.evaluate(x_train, y_train, verbose=0)
_, test_acc = model.evaluate(x_test, y_test, verbose=0)
print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))
# Evaluate model
model.evaluate(x_test, y_test)
#create predictions for test set
y_pred = model.predict(x_test, batch_size=64, verbose=1)
y_pred_bool = np.argmax(y_pred, axis=1)
y_pred_val = model.predict(x_val, batch_size=64, verbose=1)
y_pred_bool_val = np.argmax(y_pred_val, axis=1)
#save classification report
clsf_report = pd.DataFrame(classification_report(y_val, y_pred_bool_val, output_dict=True)).transpose()
clsf_report.to_csv(f'output/{model_name}/{model_name}_clsf_val_report.csv', index= True)
#save classification report
clsf_report = pd.DataFrame(classification_report(y_test, y_pred_bool, output_dict=True)).transpose()
clsf_report.to_csv(f'output/{model_name}/{model_name}_clsf_report.csv', index= True)
# save history
hist_df = pd.DataFrame(history.history)
hist_df.to_csv(f'output/{model_name}/{model_name}_history.csv', index= True)
# Visualize history
# Plot history: Loss
plt.plot(np.array(history.history['val_loss']), label = 'Validation Loss')
plt.plot(np.array(history.history['loss']), label = 'Training Loss')
plt.title('Validation loss history')
plt.ylabel('Loss value')
plt.xlabel('No. epoch')
plt.legend(loc="upper right")
plt.savefig(f'output/{model_name}/{model_name}_loss.jpg')
plt.clf()
# Plot history: Accuracy
plt.plot(np.array(history.history['val_accuracy'])*100, label = 'Validation Accuracy')
plt.plot(np.array(history.history['accuracy'])*100, label = 'Training Accuracy')
plt.title('Validation accuracy history')
plt.ylabel('Accuracy value (%)')
plt.xlabel('No. epoch')
plt.legend(loc="upper left")
plt.savefig(f'output/{model_name}/{model_name}_accuracy.jpg')
plt.clf()
#create confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test, y_pred_bool))
ax= plt.subplot()
svm = sns.heatmap(cm, annot=True, fmt='g', ax=ax, cmap="Blues"); #annot=True to annotate cells, ftm='g' to disable scientific notation
# labels, title and ticks
ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels');
ax.set_title('Confusion Matrix');
ax.xaxis.set_ticklabels(['negative', 'benign calcification', 'benign mass', 'malignant calcification', 'malignant mass'], rotation = 90);
ax.yaxis.set_ticklabels(['negative', 'benign calcification', 'benign mass', 'malignant calcification', 'malignant mass'], rotation = 0);
figure = svm.get_figure()
figure.savefig(f'output/{model_name}/{model_name}_confusion_matrix.png', bbox_inches = 'tight')
#plot model architecture
#plot_model(model, f'output/{model_name}/{model_name}_architecture.png', show_shapes=True)