1.1
10
> 10
(+ 5 3 4)
> 12
(- 9 1)
> 8
(/ 6 2)
> 3
(+ (* 2 4) (- 4 6))
> 6
(define a 3)
>
(define b (+ a 1))
>
(+ a b (* a b))
> 19
(= a b)
> #f
(if (and (> b a) (< b (* a b)))
b
a)
> 4
(cond ((= a 4) 6)
((= b 4) (+ 6 7 a))
(else 25))
> 16
(+ 2 (if (> b a) b a))
> 6
(* (cond ((> a b) a)
((< a b) b)
(else -1))
(+ a 1))
> 16
1.2
(/ (+ 5 4 (- 2 (- 3 (+ 6 (/ 4 5)))))
(* 3 (- 6 2) (- 2 7)))
1.3
(define (sum-squares x y z)
(define (squares p q) (+ (* p p) (* q q)))
(cond ((> x y z) (squares x y))
((> x z y) (squares x z))
((> y z x) (squares y z))
((> y x z) (squares y x))
((> z x y) (squares z x))
(else (squares z y))))
1.4
This function will change from a+b to a-b if b is less than 0, ensuring b as absolute.
1.5
In normal order the interpreter will "fully expand and then reduce", using values as needed. so:
(test 0 (p)) fully expands to:
(if (= 0 0) 0 (p))
Since its true, 0 is returned.
On applicative order, however, the interpreter will evaluate the arguments then apply. So it will evaluate (p) before applying test, which will make it loop forever.