-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrl.py
129 lines (110 loc) · 4.6 KB
/
trl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
from utils import save_args
from trainer import MultiHeadTrainer
from data import create_data_channels, create_single_data_object, MultiHeadDatasets
from Model import MultiHeadLanguageModel
import numpy as np
from scipy.stats import entropy
from scipy.special import softmax
import random
import torch
import argparse
N_CLASSES = {
'kim': 3,
'acl': 6,
'scicite': 3
}
def trl(labels, pred_logits):
N = len(labels)
preds = pred_logits.argmax(axis=1)
label_base = len(np.unique(labels))
pred_base = pred_logits.shape[1]
confusion_matrix = np.zeros((label_base, pred_base))
for i in range(N):
# confusion_matrix[labels[i], preds[i]] += 1
confusion_matrix[labels[i]] += softmax(pred_logits[i])
# print(confusion_matrix)
base_entropy = entropy(confusion_matrix.sum(axis=1) / confusion_matrix.sum(), base=label_base)
pred_entropy = (entropy(confusion_matrix / confusion_matrix.sum(axis=0, keepdims=True), axis=0, base=label_base) * ((confusion_matrix.sum(axis=0) / confusion_matrix.sum()))).sum()
lambda_ = (base_entropy - pred_entropy) / base_entropy
print('Base entropy: {:.4f}, pred entropy: {:.4f}, lambda: {:.4f}'.format(base_entropy, pred_entropy, lambda_))
def main_trl(args):
primary_dataset = args.primary_dataset
auxiliary_dataset = args.auxiliary_dataset
primary_data_filename = os.path.join(args.data_dir, primary_dataset+'.tsv')
auxiliary_data_filename = os.path.join(args.data_dir, auxiliary_dataset+'.tsv')
if args.lm == 'scibert':
modelname = 'allenai/scibert_scivocab_uncased'
elif args.lm == 'bert':
modelname = 'bert-base-uncased'
else:
modelname = args.lm
model = MultiHeadLanguageModel(
modelname=modelname,
device=args.device,
readout=args.readout,
num_classes=[N_CLASSES[auxiliary_dataset]]
).to(args.device)
train_data, val_data, test_data, model_label_map = create_data_channels(
auxiliary_data_filename,
args.class_definition,
lmbd=1.
)
train_datasets_list = [train_data]
train_datasets = MultiHeadDatasets(train_datasets_list)
finetuner = MultiHeadTrainer(
model,
train_datasets,
val_data,
test_data,
args
)
finetuner.train()
finetuner.load_model()
preds = finetuner.test()
aux_data, aux_label_map = create_single_data_object(
primary_data_filename, args.class_definition, split='train', lmbd=1.
)
aux_preds = finetuner.test(outside_dataset=aux_data)
aux_labels = aux_data.original_labels.numpy()
print("Primary: {}, Auxiliary: {}".format(primary_dataset, auxiliary_dataset))
trl(aux_labels, aux_preds)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# data configuration
parser.add_argument('--primary_dataset', default='acl', type=str)
parser.add_argument('--auxiliary_dataset', default='scicite', type=str)
parser.add_argument('--data_dir', default='Data/', type=str)
parser.add_argument('--workspace', default='Workspaces', type=str)
parser.add_argument('--class_definition', default='Data/class_def.json', type=str)
# training configuration
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--lr', default=5e-5, type=float)
parser.add_argument('--decay_rate', default=0.5, type=float)
parser.add_argument('--decay_step', default=5, type=int)
parser.add_argument('--num_epochs', default=10, type=int)
parser.add_argument('--scheduler', default='slanted', type=str)
parser.add_argument('--dropout_rate', default=0.2, type=float)
parser.add_argument('--l2', default=0., type=float)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--tol', default=10, type=int)
parser.add_argument('--inference_only', action='store_true')
parser.add_argument('--use_abstract', action='store_true')
parser.add_argument('--seed', default=42, type=int) # seed = 1209384756
# model configuration
parser.add_argument('--lm', default='scibert', type=str)
parser.add_argument('--max_length', default=512, type=int)
parser.add_argument('--readout', default='ch', type=str)
args = parser.parse_args()
# fix all random seeds
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
torch.backends.cudnn.deterministic = True
# save the arguments
if not os.path.exists(args.workspace):
os.mkdir(args.workspace)
save_args(args, args.workspace)
main_trl(args)