-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathexSinStraightSynthBU2.m
131 lines (116 loc) · 4.28 KB
/
exSinStraightSynthBU2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
function [sy,prmS] = exSinStraightSynth(f0raw,n3sgram,fs,optionalParamsS)
% STRAIGHT synthesis based on sinusoidal plus noise model
% [sy,prmS] = exSinStraightSynth(f0raw,n3sgram,ap,fs,optionalParams)
% Input
% f0raw : fundamental frequency (Hz)
% n3sgram : STRAIGHT spectrogram
% fs : sampling frequency
% optionalParamsS : optional parameters
% spectralUpdateInterval : frame rate (ms)
% initialPhase : initial phase of sinusoids (radian)
% lowestF0 : lowest F0 of the synthesized speech (Hz)
% Output
% sy : synthesized speech waveform
% prmS : parameters used in synthesis
% Originally coded when visiting CNBH on 2003
% Revised by Hideki Kawahara
% 10/December/2005 by Hideki Kawahara
switch nargin
case 3
prmS = zinitializeParameters(fs);
case 4
prmS = replaceSuppliedParameters(fs,optionalParamsS);
end;
shiftm = prmS.spectralUpdateInterval;
initialPhase = prmS.initialPhase;
initialAmplitude = prmS.initialAmplitude;
lowestF0 = prmS.lowestF0; % compatible default is 50 Hz
minimumPhase = prmS.minimumPhase;
%[groupDelayMap,cdm]=spectrum2GroupDelay(n3sgram,fs);
cdm =spectrum2minimumphase(n3sgram,fs);
[amx,fmx,cmx]= sinucompgd(f0raw,fs,n3sgram,cdm,shiftm);
amx(isnan(amx))=0;
%gmx(isnan(gmx))=0;
cmx(isnan(cmx))=0;
deltaPhase = 2*pi*fmx/fs;
%phaseDeviation = -2*pi*gmx.*fmx*minimumPhase;
phaseDeviation = cmx*minimumPhase;
[nTime,nFrequency] = size(deltaPhase);
lPhaseVector = length(initialPhase);
deltaPhase(1,:) = initialPhase(min(lPhaseVector,1:nFrequency))+deltaPhase(1,:);
amx = amx*diag(initialAmplitude(min(lPhaseVector,1:nFrequency)));
sy=sum(real(amx.*exp(i*(cumsum(deltaPhase)+phaseDeviation)))');
%%%---- internal functions
function prmS = zinitializeParameters(fs);
prmS.spectralUpdateInterval = 1; %shiftm=1; % default frame shift (ms) for spectrogram
prmS.lowestF0 = 50; % compatible default is 50 Hz
prmS.initialPhase = zeros(1,ceil(fs/prmS.lowestF0/2));
prmS.initialAmplitude = ones(1,ceil(fs/prmS.lowestF0/2));
prmS.minimumPhase = 0; % default is zero phase
return;
%%%----
function prmS = replaceSuppliedParameters(fs,prmin);
prmS = zinitializeParameters(fs);
if isfield(prmin,'spectralUpdateInterval')==1;
prmS.spectralUpdateInterval=prmin.spectralUpdateInterval;end;
if isfield(prmin,'lowestF0')==1;
prmS.lowestF0=prmin.lowestF0;end;
if isfield(prmin,'initialPhase')==1;
prmS.initialPhase=prmin.initialPhase;end;
if isfield(prmin,'initialAmplitude')==1;
prmS.initialAmplitude=prmin.initialAmplitude;end;
if isfield(prmin,'minimumPhase')==1;
prmS.minimumPhase=prmin.minimumPhase;end;
return;
%%%----
function [amx,fmx,cmx]= sinucompgd(f0raw,fs,n3sgram,cdm,shiftm)
% [amx,fmx]=sinucomp(f0raw,fs,n3sgram,shiftm)
% program to generate matrix for sinusoidal synthesis
%
% Designed and Coded by Hideki Kawahara
% 07/Sept./2003
t=0:1/fs:(length(f0raw)-1)/1000/shiftm;
f0i=interp1((0:length(f0raw)-1)/1000/shiftm,f0raw,t)';
f0l=min(f0raw(f0raw>0));
ng=n3sgram';
ng(:,1) = ng(:,1)*0;
%gd=gdm';
[nn,mm]=size(ng);
% ---- instantaneous frequency matrix ---
nh=ceil(fs/2/f0l);
nt=length(f0i);
fmx=zeros(nt,nh);
tmx=fmx;
for ii=0:nh-1
fmx(:,ii+1)=ii*f0i;
tmx(:,ii+1)=t';
end;
% ---- instantaneous amplitude matrix ---
amx=zeros(nt,nh);
[ff,tt]=meshgrid((0:(mm-1))*fs/((mm-1)*2),(0:(length(f0raw)-1))/1000/shiftm);
%keyboard;
amx=interp2(ff,tt,ng,fmx,tmx,'*linear');
%gmx=interp2(ff,tt,gd,fmx,tmx,'*linear');
cmx=interp2(ff,ff,cdm',fmx,fmx,'*linear');
return;
%%%---
function cph=spectrum2minimumphase(n3sgram,fs)
% gdm=spectrum2GroupDelay(n3sgram,fs)
% function to calculate group delay map from
% smoothed time frequency representation
% Designed and coded by Hideki Kawahara
% 7/Sept./2003
[nRow,nColumn]=size(n3sgram);
fftl=(nRow-1)*2;
reversedIndex=fftl/2:-1:2;
%gdm=zeros(nRow,nColumn);
cph=zeros(nRow,nColumn);
for ii=1:nColumn
dftSegment=[n3sgram(:,ii);n3sgram(reversedIndex,ii)];
complexCepstrum=real(fft(log(dftSegment)));
causalCepstrum=[complexCepstrum(1);2*complexCepstrum(2:fftl/2);0*complexCepstrum(fftl/2+1:fftl)];
causalLogSpectrum=ifft(causalCepstrum);
% rawGroupDelay=-diff(-imag(causalLogSpectrum)/(2*pi*fs/fftl));
% gdm(:,ii)=[rawGroupDelay(1);rawGroupDelay(1:fftl/2)];
cph(:,ii)=-imag(causalLogSpectrum(1:fftl/2+1));
end;